diff -r 49868b703e4d -r 2c64c7991f7c doc-src/TutorialI/Rules/Primes.thy --- a/doc-src/TutorialI/Rules/Primes.thy Wed Jan 10 11:16:38 2001 +0100 +++ b/doc-src/TutorialI/Rules/Primes.thy Wed Jan 10 12:43:40 2001 +0100 @@ -81,9 +81,18 @@ "k dvd m \ k dvd n \ k dvd gcd(m,n)" apply (induct_tac m n rule: gcd.induct) apply (case_tac "n=0") +txt{*subgoals after the case tac +@{subgoals[display,indent=0,margin=65]} +*}; apply (simp_all add: dvd_mod) done +(*just checking the claim that case_tac "n" works too*) +lemma "k dvd m \ k dvd n \ k dvd gcd(m,n)" +apply (induct_tac m n rule: gcd.induct) +apply (case_tac "n") +by (simp_all add: dvd_mod) + theorem gcd_greatest_iff [iff]: "(k dvd gcd(m,n)) = (k dvd m \ k dvd n)" by (blast intro!: gcd_greatest intro: dvd_trans)