diff -r ab87cceed53f -r 2d0d08b5b048 src/HOL/Library/Crude_Executable_Set.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Crude_Executable_Set.thy Fri Dec 04 11:03:54 2009 +0100 @@ -0,0 +1,259 @@ +(* Title: HOL/Library/Crude_Executable_Set.thy + Author: Florian Haftmann, TU Muenchen +*) + +header {* A crude implementation of finite sets by lists -- avoid using this at any cost! *} + +theory Crude_Executable_Set +imports List_Set +begin + +declare mem_def [code del] +declare Collect_def [code del] +declare insert_code [code del] +declare vimage_code [code del] + +subsection {* Set representation *} + +setup {* + Code.add_type_cmd "set" +*} + +definition Set :: "'a list \ 'a set" where + [simp]: "Set = set" + +definition Coset :: "'a list \ 'a set" where + [simp]: "Coset xs = - set xs" + +setup {* + Code.add_signature_cmd ("Set", "'a list \ 'a set") + #> Code.add_signature_cmd ("Coset", "'a list \ 'a set") + #> Code.add_signature_cmd ("set", "'a list \ 'a set") + #> Code.add_signature_cmd ("op \", "'a \ 'a set \ bool") +*} + +code_datatype Set Coset + + +subsection {* Basic operations *} + +lemma [code]: + "set xs = Set (remdups xs)" + by simp + +lemma [code]: + "x \ Set xs \ member x xs" + "x \ Coset xs \ \ member x xs" + by (simp_all add: mem_iff) + +definition is_empty :: "'a set \ bool" where + [simp]: "is_empty A \ A = {}" + +lemma [code_inline]: + "A = {} \ is_empty A" + by simp + +definition empty :: "'a set" where + [simp]: "empty = {}" + +lemma [code_inline]: + "{} = empty" + by simp + +setup {* + Code.add_signature_cmd ("is_empty", "'a set \ bool") + #> Code.add_signature_cmd ("empty", "'a set") + #> Code.add_signature_cmd ("insert", "'a \ 'a set \ 'a set") + #> Code.add_signature_cmd ("List_Set.remove", "'a \ 'a set \ 'a set") + #> Code.add_signature_cmd ("image", "('a \ 'b) \ 'a set \ 'b set") + #> Code.add_signature_cmd ("List_Set.project", "('a \ bool) \ 'a set \ 'a set") + #> Code.add_signature_cmd ("Ball", "'a set \ ('a \ bool) \ bool") + #> Code.add_signature_cmd ("Bex", "'a set \ ('a \ bool) \ bool") + #> Code.add_signature_cmd ("card", "'a set \ nat") +*} + +lemma is_empty_Set [code]: + "is_empty (Set xs) \ null xs" + by (simp add: empty_null) + +lemma empty_Set [code]: + "empty = Set []" + by simp + +lemma insert_Set [code]: + "insert x (Set xs) = Set (List_Set.insert x xs)" + "insert x (Coset xs) = Coset (remove_all x xs)" + by (simp_all add: insert_set insert_set_compl) + +lemma remove_Set [code]: + "remove x (Set xs) = Set (remove_all x xs)" + "remove x (Coset xs) = Coset (List_Set.insert x xs)" + by (simp_all add:remove_set remove_set_compl) + +lemma image_Set [code]: + "image f (Set xs) = Set (remdups (map f xs))" + by simp + +lemma project_Set [code]: + "project P (Set xs) = Set (filter P xs)" + by (simp add: project_set) + +lemma Ball_Set [code]: + "Ball (Set xs) P \ list_all P xs" + by (simp add: ball_set) + +lemma Bex_Set [code]: + "Bex (Set xs) P \ list_ex P xs" + by (simp add: bex_set) + +lemma card_Set [code]: + "card (Set xs) = length (remdups xs)" +proof - + have "card (set (remdups xs)) = length (remdups xs)" + by (rule distinct_card) simp + then show ?thesis by simp +qed + + +subsection {* Derived operations *} + +definition set_eq :: "'a set \ 'a set \ bool" where + [simp]: "set_eq = op =" + +lemma [code_inline]: + "op = = set_eq" + by simp + +definition subset_eq :: "'a set \ 'a set \ bool" where + [simp]: "subset_eq = op \" + +lemma [code_inline]: + "op \ = subset_eq" + by simp + +definition subset :: "'a set \ 'a set \ bool" where + [simp]: "subset = op \" + +lemma [code_inline]: + "op \ = subset" + by simp + +setup {* + Code.add_signature_cmd ("set_eq", "'a set \ 'a set \ bool") + #> Code.add_signature_cmd ("subset_eq", "'a set \ 'a set \ bool") + #> Code.add_signature_cmd ("subset", "'a set \ 'a set \ bool") +*} + +lemma set_eq_subset_eq [code]: + "set_eq A B \ subset_eq A B \ subset_eq B A" + by auto + +lemma subset_eq_forall [code]: + "subset_eq A B \ (\x\A. x \ B)" + by (simp add: subset_eq) + +lemma subset_subset_eq [code]: + "subset A B \ subset_eq A B \ \ subset_eq B A" + by (simp add: subset) + + +subsection {* Functorial operations *} + +definition inter :: "'a set \ 'a set \ 'a set" where + [simp]: "inter = op \" + +lemma [code_inline]: + "op \ = inter" + by simp + +definition subtract :: "'a set \ 'a set \ 'a set" where + [simp]: "subtract A B = B - A" + +lemma [code_inline]: + "B - A = subtract A B" + by simp + +definition union :: "'a set \ 'a set \ 'a set" where + [simp]: "union = op \" + +lemma [code_inline]: + "op \ = union" + by simp + +definition Inf :: "'a::complete_lattice set \ 'a" where + [simp]: "Inf = Complete_Lattice.Inf" + +lemma [code_inline]: + "Complete_Lattice.Inf = Inf" + by simp + +definition Sup :: "'a::complete_lattice set \ 'a" where + [simp]: "Sup = Complete_Lattice.Sup" + +lemma [code_inline]: + "Complete_Lattice.Sup = Sup" + by simp + +definition Inter :: "'a set set \ 'a set" where + [simp]: "Inter = Inf" + +lemma [code_inline]: + "Inf = Inter" + by simp + +definition Union :: "'a set set \ 'a set" where + [simp]: "Union = Sup" + +lemma [code_inline]: + "Sup = Union" + by simp + +setup {* + Code.add_signature_cmd ("inter", "'a set \ 'a set \ 'a set") + #> Code.add_signature_cmd ("subtract", "'a set \ 'a set \ 'a set") + #> Code.add_signature_cmd ("union", "'a set \ 'a set \ 'a set") + #> Code.add_signature_cmd ("Inf", "'a set \ 'a") + #> Code.add_signature_cmd ("Sup", "'a set \ 'a") + #> Code.add_signature_cmd ("Inter", "'a set set \ 'a set") + #> Code.add_signature_cmd ("Union", "'a set set \ 'a set") +*} + +lemma inter_project [code]: + "inter A (Set xs) = Set (List.filter (\x. x \ A) xs)" + "inter A (Coset xs) = foldl (\A x. remove x A) A xs" + by (simp add: inter project_def, simp add: Diff_eq [symmetric] minus_set) + +lemma subtract_remove [code]: + "subtract (Set xs) A = foldl (\A x. remove x A) A xs" + "subtract (Coset xs) A = Set (List.filter (\x. x \ A) xs)" + by (auto simp add: minus_set) + +lemma union_insert [code]: + "union (Set xs) A = foldl (\A x. insert x A) A xs" + "union (Coset xs) A = Coset (List.filter (\x. x \ A) xs)" + by (auto simp add: union_set) + +lemma Inf_inf [code]: + "Inf (Set xs) = foldl inf (top :: 'a::complete_lattice) xs" + "Inf (Coset []) = (bot :: 'a::complete_lattice)" + by (simp_all add: Inf_Univ bot_def [symmetric] Inf_set_fold) + +lemma Sup_sup [code]: + "Sup (Set xs) = foldl sup (bot :: 'a::complete_lattice) xs" + "Sup (Coset []) = (top :: 'a::complete_lattice)" + by (simp_all add: Sup_Univ top_def [symmetric] Sup_set_fold) + +lemma Inter_inter [code]: + "Inter (Set xs) = foldl inter (Coset []) xs" + "Inter (Coset []) = empty" + unfolding Inter_def Inf_inf by simp_all + +lemma Union_union [code]: + "Union (Set xs) = foldl union empty xs" + "Union (Coset []) = Coset []" + unfolding Union_def Sup_sup by simp_all + +hide (open) const is_empty empty remove + set_eq subset_eq subset inter union subtract Inf Sup Inter Union + +end