diff -r 547d1a1dcaf6 -r 2ded91a6cbd5 doc-src/Sledgehammer/sledgehammer.tex --- a/doc-src/Sledgehammer/sledgehammer.tex Mon Jan 30 17:15:59 2012 +0100 +++ b/doc-src/Sledgehammer/sledgehammer.tex Mon Jan 30 17:15:59 2012 +0100 @@ -537,7 +537,7 @@ for a successful \textit{metis} proof, you can advantageously pass the \textit{full\_types} option to \textit{metis} directly. -\point{And what are the \textit{lam\_lifting} and \textit{hide\_lams} arguments +\point{And what are the \textit{lifting} and \textit{hide\_lams} arguments to Metis?} Orthogonally to the encoding of types, it is important to choose an appropriate @@ -702,7 +702,7 @@ (\S\ref{problem-encoding}). % The supported $\lambda$ translation schemes are \textit{hide\_lams}, -\textit{lam\_lifting}, and \textit{combinators} (the default). +\textit{lifting}, and \textit{combs} (the default). % All the untyped type encodings listed in \S\ref{problem-encoding} are supported. For convenience, the following aliases are provided: @@ -975,21 +975,25 @@ by replacing them by unspecified fresh constants, effectively disabling all reasoning under $\lambda$-abstractions. -\item[\labelitemi] \textbf{\textit{lam\_lifting}:} Introduce a new +\item[\labelitemi] \textbf{\textit{lifting}:} Introduce a new supercombinator \const{c} for each cluster of $n$~$\lambda$-abstractions, defined using an equation $\const{c}~x_1~\ldots~x_n = t$ ($\lambda$-lifting). -\item[\labelitemi] \textbf{\textit{combinators}:} Rewrite lambdas to the Curry +\item[\labelitemi] \textbf{\textit{combs}:} Rewrite lambdas to the Curry combinators (\comb{I}, \comb{K}, \comb{S}, \comb{B}, \comb{C}). Combinators enable the ATPs to synthesize $\lambda$-terms but tend to yield bulkier formulas than $\lambda$-lifting: The translation is quadratic in the worst case, and the equational definitions of the combinators are very prolific in the context of resolution. -\item[\labelitemi] \textbf{\textit{hybrid\_lams}:} Introduce a new +\item[\labelitemi] \textbf{\textit{combs\_and\_lifting}:} Introduce a new supercombinator \const{c} for each cluster of $\lambda$-abstractions and characterize it both using a lifted equation $\const{c}~x_1~\ldots~x_n = t$ and via Curry combinators. +\item[\labelitemi] \textbf{\textit{combs\_or\_lifting}:} For each cluster of +$\lambda$-abstractions, heuristically choose between $\lambda$-lifting and Curry +combinators. + \item[\labelitemi] \textbf{\textit{keep\_lams}:} Keep the $\lambda$-abstractions in the generated problems. This is available only with provers that support the THF0 syntax. @@ -998,8 +1002,8 @@ depends on the ATP and should be the most efficient scheme for that ATP. \end{enum} -For SMT solvers, the $\lambda$ translation scheme is always -\textit{lam\_lifting}, irrespective of the value of this option. +For SMT solvers, the $\lambda$ translation scheme is always \textit{lifting}, +irrespective of the value of this option. \opdefault{type\_enc}{string}{smart} Specifies the type encoding to use in ATP problems. Some of the type encodings