diff -r b5e7594061ce -r 2e09299ce807 src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Fri Jul 29 19:47:55 2011 +0200 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Sat Jul 30 08:24:46 2011 +0200 @@ -397,10 +397,6 @@ lemma affine_hull_eq[simp]: "(affine hull s = s) \ affine s" by (metis affine_affine_hull hull_same mem_def) -lemma setsum_restrict_set'': assumes "finite A" - shows "setsum f {x \ A. P x} = (\x\A. if P x then f x else 0)" - unfolding mem_def[of _ P, symmetric] unfolding setsum_restrict_set'[OF assms] .. - subsection {* Some explicit formulations (from Lars Schewe). *} lemma affine: fixes V::"'a::real_vector set"