diff -r 95ac857276e1 -r 2e4a143c73c5 src/HOL/NumberTheory/Int2.thy --- a/src/HOL/NumberTheory/Int2.thy Wed May 17 01:23:40 2006 +0200 +++ b/src/HOL/NumberTheory/Int2.thy Wed May 17 01:23:41 2006 +0200 @@ -7,18 +7,12 @@ theory Int2 imports Finite2 WilsonRuss begin -text{*Note. This theory is being revised. See the web page -\url{http://www.andrew.cmu.edu/~avigad/isabelle}.*} +definition + MultInv :: "int => int => int" + "MultInv p x = x ^ nat (p - 2)" -constdefs - MultInv :: "int => int => int" - "MultInv p x == x ^ nat (p - 2)" -(*****************************************************************) -(* *) -(* Useful lemmas about dvd and powers *) -(* *) -(*****************************************************************) +subsection {* Useful lemmas about dvd and powers *} lemma zpower_zdvd_prop1: "0 < n \ p dvd y \ p dvd ((y::int) ^ n)" @@ -32,7 +26,7 @@ then show ?thesis by auto qed -lemma zprime_zdvd_zmult_better: "[| zprime p; p dvd (m * n) |] ==> +lemma zprime_zdvd_zmult_better: "[| zprime p; p dvd (m * n) |] ==> (p dvd m) | (p dvd n)" apply (cases "0 \ m") apply (simp add: zprime_zdvd_zmult) @@ -83,11 +77,8 @@ by arith qed -(*****************************************************************) -(* *) -(* Useful properties of congruences *) -(* *) -(*****************************************************************) + +subsection {* Useful properties of congruences *} lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)" by (auto simp add: zcong_def) @@ -101,7 +92,7 @@ lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)" by (induct z) (auto simp add: zcong_zmult) -lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==> +lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==> [a = d](mod m)" apply (erule zcong_trans) apply simp @@ -110,7 +101,7 @@ lemma aux1: "a - b = (c::int) ==> a = c + b" by auto -lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) = +lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) = [c = b * d] (mod m))" apply (auto simp add: zcong_def dvd_def) apply (rule_tac x = "ka + k * d" in exI) @@ -121,17 +112,17 @@ apply (auto simp add: int_distrib) done -lemma zcong_zmult_prop2: "[a = b](mod m) ==> +lemma zcong_zmult_prop2: "[a = b](mod m) ==> ([c = d * a](mod m) = [c = d * b] (mod m))" by (auto simp add: zmult_ac zcong_zmult_prop1) -lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p); +lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p); ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)" apply (auto simp add: zcong_def) apply (drule zprime_zdvd_zmult_better, auto) done -lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m); +lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m); x < m; y < m |] ==> x = y" apply (simp add: zcong_zmod_eq) apply (subgoal_tac "(x mod m) = x") @@ -141,7 +132,7 @@ apply auto done -lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==> +lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==> ~([x = 1] (mod p))" proof assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)" @@ -162,18 +153,18 @@ lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)" by (auto simp add: zcong_def) -lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==> - [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)" +lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==> + [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)" by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult) lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==> ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)" - apply auto + apply auto apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero) apply auto done -lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)" +lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)" by (auto simp add: zcong_zero_equiv_div zdvd_not_zless) lemma zcong_zero: "[| 0 \ x; x < m; [x = 0](mod m) |] ==> x = 0" @@ -186,17 +177,14 @@ ==> zgcd (setprod id A,y) = 1" by (induct set: Finites) (auto simp add: zgcd_zgcd_zmult) -(*****************************************************************) -(* *) -(* Some properties of MultInv *) -(* *) -(*****************************************************************) -lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> +subsection {* Some properties of MultInv *} + +lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==> [(MultInv p x) = (MultInv p y)] (mod p)" by (auto simp add: MultInv_def zcong_zpower) -lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> +lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> [(x * (MultInv p x)) = 1] (mod p)" proof (simp add: MultInv_def zcong_eq_zdvd_prop) assume "2 < p" and "zprime p" and "~ p dvd x" @@ -208,11 +196,11 @@ finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)" by (rule ssubst, auto) also from prems have "[x ^ nat (p - 1) = 1] (mod p)" - by (auto simp add: Little_Fermat) + by (auto simp add: Little_Fermat) finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" . qed -lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> +lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> [(MultInv p x) * x = 1] (mod p)" by (auto simp add: MultInv_prop2 zmult_ac) @@ -222,15 +210,15 @@ lemma aux_2: "2 < p ==> 0 < nat (p - 2)" by auto -lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> +lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> ~([MultInv p x = 0](mod p))" apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1) apply (drule aux_2) apply (drule zpower_zdvd_prop2, auto) done -lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> - [(MultInv p (MultInv p x)) = (x * (MultInv p x) * +lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==> + [(MultInv p (MultInv p x)) = (x * (MultInv p x) * (MultInv p (MultInv p x)))] (mod p)" apply (drule MultInv_prop2, auto) apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto) @@ -246,17 +234,17 @@ apply (auto simp add: zmult_ac) done -lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> +lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==> [(MultInv p (MultInv p x)) = x] (mod p)" apply (frule aux__1, auto) apply (drule aux__2, auto) apply (drule zcong_trans, auto) done -lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p)); - ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> +lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p)); + ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==> [x = y] (mod p)" - apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and + apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and m = p and k = x in zcong_scalar) apply (insert MultInv_prop2 [of p x], simp) apply (auto simp only: zcong_sym [of "MultInv p x * x"]) @@ -268,43 +256,43 @@ apply (auto simp add: zcong_sym) done -lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==> +lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==> [a * MultInv p j = a * MultInv p k] (mod p)" by (drule MultInv_prop1, auto simp add: zcong_scalar2) -lemma aux___1: "[j = a * MultInv p k] (mod p) ==> +lemma aux___1: "[j = a * MultInv p k] (mod p) ==> [j * k = a * MultInv p k * k] (mod p)" by (auto simp add: zcong_scalar) -lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p)); +lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p)); [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)" - apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 + apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2 [of "MultInv p k * k" 1 p "j * k" a]) apply (auto simp add: zmult_ac) done -lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = +lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k = (MultInv p j) * a] (mod p)" by (auto simp add: zmult_assoc zcong_scalar2) -lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p)); +lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p)); [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |] ==> [k = a * (MultInv p j)] (mod p)" - apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 + apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1 [of "MultInv p j * j" 1 p "MultInv p j * a" k]) apply (auto simp add: zmult_ac zcong_sym) done -lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p)); - ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> +lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p)); + ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==> [k = a * MultInv p j] (mod p)" apply (drule aux___1) apply (frule aux___2, auto) by (drule aux___3, drule aux___4, auto) -lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p)); +lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p)); ~([k = 0](mod p)); ~([j = 0](mod p)); - [a * MultInv p j = a * MultInv p k] (mod p) |] ==> + [a * MultInv p j = a * MultInv p k] (mod p) |] ==> [j = k] (mod p)" apply (auto simp add: zcong_eq_zdvd_prop [of a p]) apply (frule zprime_imp_zrelprime, auto)