diff -r 001d1aad99de -r 2e9a866141b8 src/HOL/RealPow.thy --- a/src/HOL/RealPow.thy Tue May 11 06:27:06 2010 -0700 +++ b/src/HOL/RealPow.thy Tue May 11 06:30:48 2010 -0700 @@ -124,31 +124,4 @@ by simp qed -subsection {*Various Other Theorems*} - -lemma real_le_add_half_cancel: "(x + y/2 \ (y::real)) = (x \ y /2)" -by auto - -lemma real_mult_inverse_cancel: - "[|(0::real) < x; 0 < x1; x1 * y < x * u |] - ==> inverse x * y < inverse x1 * u" -apply (rule_tac c=x in mult_less_imp_less_left) -apply (auto simp add: mult_assoc [symmetric]) -apply (simp (no_asm) add: mult_ac) -apply (rule_tac c=x1 in mult_less_imp_less_right) -apply (auto simp add: mult_ac) -done - -lemma real_mult_inverse_cancel2: - "[|(0::real) < x;0 < x1; x1 * y < x * u |] ==> y * inverse x < u * inverse x1" -apply (auto dest: real_mult_inverse_cancel simp add: mult_ac) -done - -(* TODO: no longer real-specific; rename and move elsewhere *) -lemma realpow_num_eq_if: - fixes m :: "'a::power" - shows "m ^ n = (if n=0 then 1 else m * m ^ (n - 1))" -by (cases n, auto) - - end