diff -r 1f017e6a0395 -r 2f119f54d150 src/HOL/Hyperreal/Lim.thy --- a/src/HOL/Hyperreal/Lim.thy Sat Apr 07 18:54:30 2007 +0200 +++ b/src/HOL/Hyperreal/Lim.thy Sun Apr 08 17:54:52 2007 +0200 @@ -557,52 +557,12 @@ subsubsection {* Derived theorems about @{term LIM} *} -lemma LIM_mult2: - fixes l m :: "'a::real_normed_algebra" - shows "[| f -- x --> l; g -- x --> m |] - ==> (%x. f(x) * g(x)) -- x --> (l * m)" -by (simp add: LIM_NSLIM_iff NSLIM_mult) - -lemma LIM_scaleR: - "[| f -- x --> l; g -- x --> m |] - ==> (%x. f(x) *# g(x)) -- x --> (l *# m)" -by (simp add: LIM_NSLIM_iff NSLIM_scaleR) - -lemma LIM_add2: - "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) + g(x)) -- x --> (l + m)" -by (simp add: LIM_NSLIM_iff NSLIM_add) - -lemma LIM_const2: "(%x. k) -- x --> k" -by (simp add: LIM_NSLIM_iff) - -lemma LIM_minus2: "f -- a --> L ==> (%x. -f(x)) -- a --> -L" -by (simp add: LIM_NSLIM_iff NSLIM_minus) - -lemma LIM_add_minus2: "[| f -- x --> l; g -- x --> m |] ==> (%x. f(x) + -g(x)) -- x --> (l + -m)" -by (simp add: LIM_NSLIM_iff NSLIM_add_minus) - lemma LIM_inverse: fixes L :: "'a::real_normed_div_algebra" shows "[| f -- a --> L; L \ 0 |] ==> (%x. inverse(f(x))) -- a --> (inverse L)" by (simp add: LIM_NSLIM_iff NSLIM_inverse) -lemma LIM_zero2: "f -- a --> l ==> (%x. f(x) - l) -- a --> 0" -by (simp add: LIM_NSLIM_iff NSLIM_zero) - -lemma LIM_unique2: - fixes a :: real - shows "[| f -- a --> L; f -- a --> M |] ==> L = M" -by (simp add: LIM_NSLIM_iff NSLIM_unique) - -(* we can use the corresponding thm LIM_mult2 *) -(* for standard definition of limit *) - -lemma LIM_mult_zero2: - fixes f g :: "'a::real_normed_vector \ 'b::real_normed_algebra" - shows "[| f -- x --> 0; g -- x --> 0 |] ==> (%x. f(x)*g(x)) -- x --> 0" -by (drule LIM_mult2, auto) - subsection {* Continuity *}