diff -r f5ca4c2157a5 -r 2f4e2aab190a src/HOL/Computational_Algebra/Fundamental_Theorem_Algebra.thy --- a/src/HOL/Computational_Algebra/Fundamental_Theorem_Algebra.thy Thu Jun 28 10:13:54 2018 +0200 +++ b/src/HOL/Computational_Algebra/Fundamental_Theorem_Algebra.thy Thu Jun 28 14:13:57 2018 +0100 @@ -337,13 +337,13 @@ by (simp add: field_simps) have one0: "1 > (0::real)" by arith - from real_lbound_gt_zero[OF one0 em0] + from field_lbound_gt_zero[OF one0 em0] obtain d where d: "d > 0" "d < 1" "d < e / m" by blast from d(1,3) m(1) have dm: "d * m > 0" "d * m < e" by (simp_all add: field_simps) show ?case - proof (rule ex_forward[OF real_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult) + proof (rule ex_forward[OF field_lbound_gt_zero[OF one0 em0]], clarsimp simp add: norm_mult) fix d w assume H: "d > 0" "d < 1" "d < e/m" "w \ z" "norm (w - z) < d" then have d1: "norm (w-z) \ 1" "d \ 0" @@ -754,7 +754,7 @@ have inv0: "0 < inverse (cmod w ^ (k + 1) * m)" using norm_ge_zero[of w] w0 m(1) by (simp add: inverse_eq_divide zero_less_mult_iff) - with real_lbound_gt_zero[OF zero_less_one] obtain t where + with field_lbound_gt_zero[OF zero_less_one] obtain t where t: "t > 0" "t < 1" "t < inverse (cmod w ^ (k + 1) * m)" by blast let ?ct = "complex_of_real t" let ?w = "?ct * w" @@ -844,7 +844,7 @@ m: "m > 0" "\z. \z. cmod z \ 1 \ cmod (poly ds z) \ m" by blast have dm: "cmod d / m > 0" using False m(1) by (simp add: field_simps) - from real_lbound_gt_zero[OF dm zero_less_one] + from field_lbound_gt_zero[OF dm zero_less_one] obtain x where x: "x > 0" "x < cmod d / m" "x < 1" by blast let ?x = "complex_of_real x"