diff -r 527811f00c56 -r 2f98365f57a8 doc-src/TutorialI/Overview/LNCS/FP0.thy --- a/doc-src/TutorialI/Overview/LNCS/FP0.thy Wed Jul 31 16:10:24 2002 +0200 +++ b/doc-src/TutorialI/Overview/LNCS/FP0.thy Wed Jul 31 17:42:38 2002 +0200 @@ -15,17 +15,6 @@ "rev (x # xs) = (rev xs) @ (x # [])" theorem rev_rev [simp]: "rev(rev xs) = xs" -(*<*)oops(*>*) +(*<*)oops(*>*)text_raw{*\isanewline\isanewline*} -text{* -\begin{exercise} -Define a datatype of binary trees and a function @{term mirror} -that mirrors a binary tree by swapping subtrees recursively. Prove -@{prop"mirror(mirror t) = t"}. - -Define a function @{term flatten} that flattens a tree into a list -by traversing it in infix order. Prove -@{prop"flatten(mirror t) = rev(flatten t)"}. -\end{exercise} -*} end