diff -r 317a6f0ef8b9 -r 2ff0ae57431d src/HOL/Nominal/Examples/CR.thy --- a/src/HOL/Nominal/Examples/CR.thy Wed Jan 11 18:21:23 2006 +0100 +++ b/src/HOL/Nominal/Examples/CR.thy Wed Jan 11 18:38:32 2006 +0100 @@ -10,7 +10,7 @@ assumes a: "a\t1" shows "t1[a::=t2] = t1" using a -proof (nominal_induct t1 avoiding: a t2 rule: lam_induct) +proof (nominal_induct t1 avoiding: a t2 rule: lam.induct) case (Var b) thus ?case by (simp add: fresh_atm) next @@ -32,7 +32,7 @@ assumes a: "a\t1" shows "t1[a::=t2] = t1" using a - by (nominal_induct t1 avoiding: a t2 rule: lam_induct) + by (nominal_induct t1 avoiding: a t2 rule: lam.induct) (auto simp add: abs_fresh fresh_atm) lemma fresh_fact: @@ -41,7 +41,7 @@ and b: "a\t2" shows "a\(t1[b::=t2])" using a b -proof (nominal_induct t1 avoiding: a b t2 rule: lam_induct) +proof (nominal_induct t1 avoiding: a b t2 rule: lam.induct) case (Var c) thus ?case by simp next @@ -64,7 +64,7 @@ and b: "a\t2" shows "a\(t1[b::=t2])" using a b -by (nominal_induct t1 avoiding: a b t2 rule: lam_induct) +by (nominal_induct t1 avoiding: a b t2 rule: lam.induct) (auto simp add: abs_fresh fresh_atm) @@ -78,7 +78,7 @@ and b: "x\L" shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]" using a b -proof (nominal_induct M avoiding: x y N L rule: lam_induct) +proof (nominal_induct M avoiding: x y N L rule: lam.induct) case (Var z) (* case 1: Variables*) have "x\y" by fact have "x\L" by fact @@ -132,14 +132,14 @@ and b: "x\L" shows "M[x::=N][y::=L] = M[y::=L][x::=N[y::=L]]" using a b -by (nominal_induct M avoiding: x y N L rule: lam_induct) +by (nominal_induct M avoiding: x y N L rule: lam.induct) (auto simp add: fresh_fact forget) lemma subst_rename: assumes a: "c\t1" shows "t1[a::=t2] = ([(c,a)]\t1)[c::=t2]" using a -proof (nominal_induct t1 avoiding: a c t2 rule: lam_induct) +proof (nominal_induct t1 avoiding: a c t2 rule: lam.induct) case (Var b) thus "(Var b)[a::=t2] = ([(c,a)]\(Var b))[c::=t2]" by (simp add: calc_atm fresh_atm) next @@ -166,7 +166,7 @@ assumes a: "c\t1" shows "t1[a::=t2] = ([(c,a)]\t1)[c::=t2]" using a -apply(nominal_induct t1 avoiding: a c t2 rule: lam_induct) +apply(nominal_induct t1 avoiding: a c t2 rule: lam.induct) apply(auto simp add: calc_atm fresh_atm abs_fresh) done @@ -352,7 +352,7 @@ assumes a: "a\t2" shows "a\(t1[a::=t2])" using a -proof (nominal_induct t1 avoiding: a t2 rule: lam_induct) +proof (nominal_induct t1 avoiding: a t2 rule: lam.induct) case (Var b) thus ?case by (simp add: fresh_atm) next @@ -473,7 +473,7 @@ assumes a: "N\\<^isub>1N'" shows "M[x::=N] \\<^isub>1 M[x::=N']" using a -proof (nominal_induct M avoiding: x N N' rule: lam_induct) +proof (nominal_induct M avoiding: x N N' rule: lam.induct) case (Var y) show "Var y[x::=N] \\<^isub>1 Var y[x::=N']" by (cases "x=y", auto) next @@ -488,7 +488,7 @@ assumes a: "N\\<^isub>1N'" shows "M[x::=N] \\<^isub>1 M[x::=N']" using a -apply(nominal_induct M avoiding: x N N' rule: lam_induct) +apply(nominal_induct M avoiding: x N N' rule: lam.induct) apply(auto simp add: fresh_prod fresh_atm) done