diff -r a7f85074c169 -r 30a1692557b0 src/HOL/Int.thy --- a/src/HOL/Int.thy Sun Apr 01 09:12:03 2012 +0200 +++ b/src/HOL/Int.thy Sun Apr 01 16:09:58 2012 +0200 @@ -990,6 +990,8 @@ "numeral v - (1::nat) = nat (numeral v - 1)" using diff_nat_numeral [of v Num.One] by simp +lemmas nat_arith = diff_nat_numeral + subsection "Induction principles for int" @@ -1756,6 +1758,8 @@ lemmas abs_int_eq = abs_of_nat [where 'a=int and n="m"] for m lemmas of_int_int_eq = of_int_of_nat_eq [where 'a=int] lemmas zdiff_int = of_nat_diff [where 'a=int, symmetric] +lemmas zpower_numeral_even = power_numeral_even [where 'a=int] +lemmas zpower_numeral_odd = power_numeral_odd [where 'a=int] lemma zpower_zpower: "(x ^ y) ^ z = (x ^ (y * z)::int)"