diff -r 42671298f037 -r 313a24b66a8d doc-src/TutorialI/Inductive/document/Mutual.tex --- a/doc-src/TutorialI/Inductive/document/Mutual.tex Sun Nov 07 23:32:26 2010 +0100 +++ b/doc-src/TutorialI/Inductive/document/Mutual.tex Mon Nov 08 00:00:47 2010 +0100 @@ -25,23 +25,23 @@ natural numbers:% \end{isamarkuptext}% \isamarkuptrue% -\isacommand{inductive{\isacharunderscore}set}\isamarkupfalse% +\isacommand{inductive{\isaliteral{5F}{\isacharunderscore}}set}\isamarkupfalse% \isanewline -\ \ Even\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ set{\isachardoublequoteclose}\ \isakeyword{and}\isanewline -\ \ Odd\ \ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ set{\isachardoublequoteclose}\isanewline +\ \ Even\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}nat\ set{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{and}\isanewline +\ \ Odd\ \ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}nat\ set{\isaliteral{22}{\isachardoublequoteclose}}\isanewline \isakeyword{where}\isanewline -\ \ zero{\isacharcolon}\ \ {\isachardoublequoteopen}{\isadigit{0}}\ {\isasymin}\ Even{\isachardoublequoteclose}\isanewline -{\isacharbar}\ EvenI{\isacharcolon}\ {\isachardoublequoteopen}n\ {\isasymin}\ Odd\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ Even{\isachardoublequoteclose}\isanewline -{\isacharbar}\ OddI{\isacharcolon}\ \ {\isachardoublequoteopen}n\ {\isasymin}\ Even\ {\isasymLongrightarrow}\ Suc\ n\ {\isasymin}\ Odd{\isachardoublequoteclose}% +\ \ zero{\isaliteral{3A}{\isacharcolon}}\ \ {\isaliteral{22}{\isachardoublequoteopen}}{\isadigit{0}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +{\isaliteral{7C}{\isacharbar}}\ EvenI{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Odd\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Suc\ n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even{\isaliteral{22}{\isachardoublequoteclose}}\isanewline +{\isaliteral{7C}{\isacharbar}}\ OddI{\isaliteral{3A}{\isacharcolon}}\ \ {\isaliteral{22}{\isachardoublequoteopen}}n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ Suc\ n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Odd{\isaliteral{22}{\isachardoublequoteclose}}% \begin{isamarkuptext}% \noindent The mutually inductive definition of multiple sets is no different from that of a single set, except for induction: just as for mutually recursive datatypes, induction needs to involve all the simultaneously defined sets. In -the above case, the induction rule is called \isa{Even{\isacharunderscore}Odd{\isachardot}induct} +the above case, the induction rule is called \isa{Even{\isaliteral{5F}{\isacharunderscore}}Odd{\isaliteral{2E}{\isachardot}}induct} (simply concatenate the names of the sets involved) and has the conclusion \begin{isabelle}% -\ \ \ \ \ {\isacharparenleft}{\isacharquery}x\ {\isasymin}\ Even\ {\isasymlongrightarrow}\ {\isacharquery}P\ {\isacharquery}x{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}{\isacharquery}y\ {\isasymin}\ Odd\ {\isasymlongrightarrow}\ {\isacharquery}Q\ {\isacharquery}y{\isacharparenright}% +\ \ \ \ \ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}P\ {\isaliteral{3F}{\isacharquery}}x{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{3F}{\isacharquery}}y\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Odd\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}Q\ {\isaliteral{3F}{\isacharquery}}y{\isaliteral{29}{\isacharparenright}}% \end{isabelle} If we want to prove that all even numbers are divisible by two, we have to @@ -49,7 +49,7 @@ \end{isamarkuptext}% \isamarkuptrue% \isacommand{lemma}\isamarkupfalse% -\ {\isachardoublequoteopen}{\isacharparenleft}m\ {\isasymin}\ Even\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ m{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}n\ {\isasymin}\ Odd\ {\isasymlongrightarrow}\ {\isadigit{2}}\ dvd\ {\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}% +\ {\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}m\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isadigit{2}}\ dvd\ m{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ {\isaliteral{28}{\isacharparenleft}}n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Odd\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isadigit{2}}\ dvd\ {\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% \isadelimproof % \endisadelimproof @@ -64,12 +64,12 @@ \end{isamarkuptxt}% \isamarkuptrue% \isacommand{apply}\isamarkupfalse% -{\isacharparenleft}rule\ Even{\isacharunderscore}Odd{\isachardot}induct{\isacharparenright}% +{\isaliteral{28}{\isacharparenleft}}rule\ Even{\isaliteral{5F}{\isacharunderscore}}Odd{\isaliteral{2E}{\isachardot}}induct{\isaliteral{29}{\isacharparenright}}% \begin{isamarkuptxt}% \begin{isabelle}% -\ {\isadigit{1}}{\isachardot}\ {\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline -\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ Odd{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ Suc\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ n\isanewline -\ {\isadigit{3}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymlbrakk}n\ {\isasymin}\ Even{\isacharsemicolon}\ {\isadigit{2}}\ dvd\ n{\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isadigit{2}}\ dvd\ Suc\ {\isacharparenleft}Suc\ n{\isacharparenright}% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isadigit{2}}\ dvd\ {\isadigit{0}}\isanewline +\ {\isadigit{2}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}n{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Odd{\isaliteral{3B}{\isacharsemicolon}}\ {\isadigit{2}}\ dvd\ Suc\ n{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isadigit{2}}\ dvd\ Suc\ n\isanewline +\ {\isadigit{3}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}n{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ Even{\isaliteral{3B}{\isacharsemicolon}}\ {\isadigit{2}}\ dvd\ n{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isadigit{2}}\ dvd\ Suc\ {\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}% \end{isabelle} The first two subgoals are proved by simplification and the final one can be proved in the same manner as in \S\ref{sec:rule-induction} @@ -95,19 +95,19 @@ \end{isamarkuptext}% \isamarkuptrue% \isacommand{inductive}\isamarkupfalse% -\ evn\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ {\isasymRightarrow}\ bool{\isachardoublequoteclose}\ \isakeyword{where}\isanewline -zero{\isacharcolon}\ {\isachardoublequoteopen}evn\ {\isadigit{0}}{\isachardoublequoteclose}\ {\isacharbar}\isanewline -step{\isacharcolon}\ {\isachardoublequoteopen}evn\ n\ {\isasymLongrightarrow}\ evn{\isacharparenleft}Suc{\isacharparenleft}Suc\ n{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}% +\ evn\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}nat\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline +zero{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}evn\ {\isadigit{0}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline +step{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}evn\ n\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ evn{\isaliteral{28}{\isacharparenleft}}Suc{\isaliteral{28}{\isacharparenleft}}Suc\ n{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}% \begin{isamarkuptext}% \noindent Everything works as before, except that you write \commdx{inductive} instead of \isacommand{inductive\_set} and -\isa{evn\ n} instead of \isa{n\ {\isasymin}\ even}. +\isa{evn\ n} instead of \isa{n\ {\isaliteral{5C3C696E3E}{\isasymin}}\ even}. When defining an n-ary relation as a predicate, it is recommended to curry -the predicate: its type should be \mbox{\isa{{\isasymtau}\isactrlisub {\isadigit{1}}\ {\isasymRightarrow}\ {\isasymdots}\ {\isasymRightarrow}\ {\isasymtau}\isactrlisub n\ {\isasymRightarrow}\ bool}} +the predicate: its type should be \mbox{\isa{{\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub {\isadigit{1}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub n\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool}} rather than -\isa{{\isasymtau}\isactrlisub {\isadigit{1}}\ {\isasymtimes}\ {\isasymdots}\ {\isasymtimes}\ {\isasymtau}\isactrlisub n\ {\isasymRightarrow}\ bool}. The curried version facilitates inductions. +\isa{{\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub {\isadigit{1}}\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{5C3C646F74733E}{\isasymdots}}\ {\isaliteral{5C3C74696D65733E}{\isasymtimes}}\ {\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub n\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool}. The curried version facilitates inductions. -When should you choose sets and when predicates? If you intend to combine your notion with set theoretic notation, define it as an inductive set. If not, define it as an inductive predicate, thus avoiding the \isa{{\isasymin}} notation. But note that predicates of more than one argument cannot be combined with the usual set theoretic operators: \isa{P\ {\isasymunion}\ Q} is not well-typed if \isa{P{\isacharcomma}\ Q\ {\isacharcolon}{\isacharcolon}\ {\isasymtau}\isactrlisub {\isadigit{1}}\ {\isasymRightarrow}\ {\isasymtau}\isactrlisub {\isadigit{2}}\ {\isasymRightarrow}\ bool}, you have to write \isa{{\isasymlambda}x\ y{\isachardot}\ P\ x\ y\ {\isasymand}\ Q\ x\ y} instead. +When should you choose sets and when predicates? If you intend to combine your notion with set theoretic notation, define it as an inductive set. If not, define it as an inductive predicate, thus avoiding the \isa{{\isaliteral{5C3C696E3E}{\isasymin}}} notation. But note that predicates of more than one argument cannot be combined with the usual set theoretic operators: \isa{P\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ Q} is not well-typed if \isa{P{\isaliteral{2C}{\isacharcomma}}\ Q\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub {\isadigit{1}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ {\isaliteral{5C3C7461753E}{\isasymtau}}\isaliteral{5C3C5E697375623E}{}\isactrlisub {\isadigit{2}}\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool}, you have to write \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}x\ y{\isaliteral{2E}{\isachardot}}\ P\ x\ y\ {\isaliteral{5C3C616E643E}{\isasymand}}\ Q\ x\ y} instead. \index{inductive predicates|)}% \end{isamarkuptext}% \isamarkuptrue%