diff -r 42671298f037 -r 313a24b66a8d doc-src/TutorialI/Rules/document/find2.tex --- a/doc-src/TutorialI/Rules/document/find2.tex Sun Nov 07 23:32:26 2010 +0100 +++ b/doc-src/TutorialI/Rules/document/find2.tex Mon Nov 08 00:00:47 2010 +0100 @@ -31,10 +31,10 @@ \texttt{intro}, \texttt{elim} and \texttt{dest}. For example, given the goal \begin{isabelle}% -\ {\isadigit{1}}{\isachardot}\ A\ {\isasymand}\ B% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C616E643E}{\isasymand}}\ B% \end{isabelle} you can click on \pgmenu{Find} and type in the search expression -\texttt{intro}. You will be shown a few rules ending in \isa{{\isasymLongrightarrow}\ {\isacharquery}P\ {\isasymand}\ {\isacharquery}Q}, +\texttt{intro}. You will be shown a few rules ending in \isa{{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}P\ {\isaliteral{5C3C616E643E}{\isasymand}}\ {\isaliteral{3F}{\isacharquery}}Q}, among them \isa{conjI}\@. You may even discover that the very theorem you are trying to prove is already in the database. Given the goal% @@ -57,17 +57,17 @@ \begin{isamarkuptxt}% \vspace{-\bigskipamount} \begin{isabelle}% -\ {\isadigit{1}}{\isachardot}\ A\ {\isasymlongrightarrow}\ A% +\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ A% \end{isabelle} the search for \texttt{intro} finds not just \isa{impI} -but also \isa{imp{\isacharunderscore}refl}: \isa{{\isacharquery}P\ {\isasymlongrightarrow}\ {\isacharquery}P}. +but also \isa{imp{\isaliteral{5F}{\isacharunderscore}}refl}: \isa{{\isaliteral{3F}{\isacharquery}}P\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ {\isaliteral{3F}{\isacharquery}}P}. As before, search criteria can be combined freely: for example, \begin{ttbox} "_ \at\ _" intro \end{ttbox} searches for all introduction rules that match the current goal and -mention the \isa{{\isacharat}} function. +mention the \isa{{\isaliteral{40}{\isacharat}}} function. Searching for elimination and destruction rules via \texttt{elim} and \texttt{dest} is analogous to \texttt{intro} but takes the assumptions