diff -r f869bb857425 -r 314a88278715 src/HOL/Matrix/LP.thy --- a/src/HOL/Matrix/LP.thy Mon Jul 19 12:17:38 2010 +0200 +++ b/src/HOL/Matrix/LP.thy Mon Jul 19 16:09:43 2010 +0200 @@ -6,6 +6,15 @@ imports Main Lattice_Algebras begin +lemma le_add_right_mono: + assumes + "a <= b + (c::'a::ordered_ab_group_add)" + "c <= d" + shows "a <= b + d" + apply (rule_tac order_trans[where y = "b+c"]) + apply (simp_all add: prems) + done + lemma linprog_dual_estimate: assumes "A * x \ (b::'a::lattice_ring)" @@ -49,8 +58,8 @@ done from 6 7 8 9 12 13 r have 14:" abs((y * (A - A') + (y * A' - c') + (c'-c)) * x) <=(abs y * \A + abs (y*A'-c') + \c) * r" by (simp) - show ?thesis - apply (rule_tac le_add_right_mono[of _ _ "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"]) + show ?thesis + apply (rule le_add_right_mono[of _ _ "abs((y * (A - A') + (y * A' - c') + (c'-c)) * x)"]) apply (simp_all only: 5 14[simplified abs_of_nonneg[of y, simplified prems]]) done qed @@ -138,9 +147,9 @@ then have "c * x <= y * b - (y * A - c) * x" by (simp add: le_diff_eq) then have cx: "c * x <= y * b + (c - y * A) * x" by (simp add: algebra_simps) have s2: "c - y * A <= c2 - y * A1" - by (simp add: diff_def prems add_mono mult_left_mono) + by (simp add: diff_minus prems add_mono mult_left_mono) have s1: "c1 - y * A2 <= c - y * A" - by (simp add: diff_def prems add_mono mult_left_mono) + by (simp add: diff_minus prems add_mono mult_left_mono) have prts: "(c - y * A) * x <= ?C" apply (simp add: Let_def) apply (rule mult_le_prts)