diff -r 97c06cfd31e5 -r 31f2105521ee src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy Sun Dec 27 16:40:09 2015 +0100 +++ b/src/HOL/Word/Word.thy Sun Dec 27 17:16:21 2015 +0100 @@ -1425,7 +1425,7 @@ apply force done -lemma udvd_iff_dvd: "x udvd y <-> unat x dvd unat y" +lemma udvd_iff_dvd: "x udvd y \ unat x dvd unat y" unfolding dvd_def udvd_nat_alt by force lemmas unat_mono = word_less_nat_alt [THEN iffD1] @@ -3273,7 +3273,7 @@ lemma eq_mod_iff: "0 < (n::int) \ b = b mod n \ 0 \ b \ b < n" by (simp add: int_mod_lem eq_sym_conv) -lemma mask_eq_iff: "(w AND mask n) = w <-> uint w < 2 ^ n" +lemma mask_eq_iff: "(w AND mask n) = w \ uint w < 2 ^ n" apply (simp add: and_mask_bintr) apply (simp add: word_ubin.inverse_norm) apply (simp add: eq_mod_iff bintrunc_mod2p min_def) @@ -3691,7 +3691,7 @@ done lemma word_split_bl: "std = size c - size b \ - (a = of_bl (take std (to_bl c)) & b = of_bl (drop std (to_bl c))) <-> + (a = of_bl (take std (to_bl c)) & b = of_bl (drop std (to_bl c))) \ word_split c = (a, b)" apply (rule iffI) defer @@ -3729,7 +3729,7 @@ (\n::nat. b !! n \ n < size b \ c !! n) \ (\m::nat. a !! m \ m < size a \ c !! (m + size b))" by (simp add: test_bit_split') -lemma test_bit_split_eq: "word_split c = (a, b) <-> +lemma test_bit_split_eq: "word_split c = (a, b) \ ((ALL n::nat. b !! n = (n < size b & c !! n)) & (ALL m::nat. a !! m = (m < size a & c !! (m + size b))))" apply (rule_tac iffI)