diff -r 304a47739407 -r 04ce6bb14d85 src/HOL/Inductive.thy --- a/src/HOL/Inductive.thy Thu Sep 24 19:14:18 2009 +0200 +++ b/src/HOL/Inductive.thy Fri Sep 25 09:50:31 2009 +0200 @@ -83,7 +83,7 @@ and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)" shows "P(a)" by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp]) - (auto simp: inf_set_eq intro: indhyp) + (auto simp: intro: indhyp) lemma lfp_ordinal_induct: fixes f :: "'a\complete_lattice \ 'a" @@ -184,7 +184,7 @@ text{*strong version, thanks to Coen and Frost*} lemma coinduct_set: "[| mono(f); a: X; X \ f(X Un gfp(f)) |] ==> a : gfp(f)" -by (blast intro: weak_coinduct [OF _ coinduct_lemma, simplified sup_set_eq]) +by (blast intro: weak_coinduct [OF _ coinduct_lemma]) lemma coinduct: "[| mono(f); X \ f (sup X (gfp f)) |] ==> X \ gfp(f)" apply (rule order_trans)