diff -r 304a47739407 -r 04ce6bb14d85 src/HOL/Predicate.thy --- a/src/HOL/Predicate.thy Thu Sep 24 19:14:18 2009 +0200 +++ b/src/HOL/Predicate.thy Fri Sep 25 09:50:31 2009 +0200 @@ -81,7 +81,7 @@ lemma sup2_iff: "sup A B x y \ A x y | B x y" by (simp add: sup_fun_eq sup_bool_eq) -lemma sup_Un_eq [pred_set_conv]: "sup (\x. x \ R) (\x. x \ S) = (\x. x \ R \ S)" +lemma sup_Un_eq: "sup (\x. x \ R) (\x. x \ S) = (\x. x \ R \ S)" by (simp add: sup1_iff expand_fun_eq) lemma sup_Un_eq2 [pred_set_conv]: "sup (\x y. (x, y) \ R) (\x y. (x, y) \ S) = (\x y. (x, y) \ R \ S)" @@ -125,7 +125,7 @@ lemma inf2_iff: "inf A B x y \ A x y \ B x y" by (simp add: inf_fun_eq inf_bool_eq) -lemma inf_Int_eq [pred_set_conv]: "inf (\x. x \ R) (\x. x \ S) = (\x. x \ R \ S)" +lemma inf_Int_eq: "inf (\x. x \ R) (\x. x \ S) = (\x. x \ R \ S)" by (simp add: inf1_iff expand_fun_eq) lemma inf_Int_eq2 [pred_set_conv]: "inf (\x y. (x, y) \ R) (\x y. (x, y) \ S) = (\x y. (x, y) \ R \ S)"