diff -r 304a47739407 -r 04ce6bb14d85 src/HOL/Set.thy --- a/src/HOL/Set.thy Thu Sep 24 19:14:18 2009 +0200 +++ b/src/HOL/Set.thy Fri Sep 25 09:50:31 2009 +0200 @@ -652,8 +652,8 @@ subsubsection {* Binary union -- Un *} -definition union :: "'a set \ 'a set \ 'a set" (infixl "Un" 65) where - sup_set_eq [symmetric]: "A Un B = sup A B" +abbreviation union :: "'a set \ 'a set \ 'a set" (infixl "Un" 65) where + "op Un \ sup" notation (xsymbols) union (infixl "\" 65) @@ -663,7 +663,7 @@ lemma Un_def: "A \ B = {x. x \ A \ x \ B}" - by (simp add: sup_fun_eq sup_bool_eq sup_set_eq [symmetric] Collect_def mem_def) + by (simp add: sup_fun_eq sup_bool_eq Collect_def mem_def) lemma Un_iff [simp]: "(c : A Un B) = (c:A | c:B)" by (unfold Un_def) blast @@ -689,15 +689,13 @@ by (simp add: Collect_def mem_def insert_compr Un_def) lemma mono_Un: "mono f \ f A \ f B \ f (A \ B)" - apply (fold sup_set_eq) - apply (erule mono_sup) - done + by (fact mono_sup) subsubsection {* Binary intersection -- Int *} -definition inter :: "'a set \ 'a set \ 'a set" (infixl "Int" 70) where - inf_set_eq [symmetric]: "A Int B = inf A B" +abbreviation inter :: "'a set \ 'a set \ 'a set" (infixl "Int" 70) where + "op Int \ inf" notation (xsymbols) inter (infixl "\" 70) @@ -707,7 +705,7 @@ lemma Int_def: "A \ B = {x. x \ A \ x \ B}" - by (simp add: inf_fun_eq inf_bool_eq inf_set_eq [symmetric] Collect_def mem_def) + by (simp add: inf_fun_eq inf_bool_eq Collect_def mem_def) lemma Int_iff [simp]: "(c : A Int B) = (c:A & c:B)" by (unfold Int_def) blast @@ -725,9 +723,7 @@ by simp lemma mono_Int: "mono f \ f (A \ B) \ f A \ f B" - apply (fold inf_set_eq) - apply (erule mono_inf) - done + by (fact mono_inf) subsubsection {* Set difference *}