diff -r 9926c47ad1a1 -r 32ad17fe2b9c src/HOL/Tools/cnf_funcs.ML --- a/src/HOL/Tools/cnf_funcs.ML Thu Aug 19 16:08:54 2010 +0200 +++ b/src/HOL/Tools/cnf_funcs.ML Thu Aug 19 16:08:59 2010 +0200 @@ -93,16 +93,16 @@ val cnftac_eq_imp = @{lemma "[| P = Q; P |] ==> Q" by auto}; -fun is_atom (Const (@{const_name "False"}, _)) = false - | is_atom (Const (@{const_name "True"}, _)) = false +fun is_atom (Const (@{const_name False}, _)) = false + | is_atom (Const (@{const_name True}, _)) = false | is_atom (Const (@{const_name "op &"}, _) $ _ $ _) = false | is_atom (Const (@{const_name "op |"}, _) $ _ $ _) = false | is_atom (Const (@{const_name "op -->"}, _) $ _ $ _) = false | is_atom (Const (@{const_name "op ="}, Type ("fun", @{typ bool} :: _)) $ _ $ _) = false - | is_atom (Const (@{const_name "Not"}, _) $ _) = false + | is_atom (Const (@{const_name Not}, _) $ _) = false | is_atom _ = true; -fun is_literal (Const (@{const_name "Not"}, _) $ x) = is_atom x +fun is_literal (Const (@{const_name Not}, _) $ x) = is_atom x | is_literal x = is_atom x; fun is_clause (Const (@{const_name "op |"}, _) $ x $ y) = is_clause x andalso is_clause y @@ -118,7 +118,7 @@ fun clause_is_trivial c = let (* Term.term -> Term.term *) - fun dual (Const (@{const_name "Not"}, _) $ x) = x + fun dual (Const (@{const_name Not}, _) $ x) = x | dual x = HOLogic.Not $ x (* Term.term list -> bool *) fun has_duals [] = false @@ -214,32 +214,32 @@ in make_nnf_iff OF [thm1, thm2, thm3, thm4] end - | make_nnf_thm thy (Const (@{const_name "Not"}, _) $ Const (@{const_name "False"}, _)) = + | make_nnf_thm thy (Const (@{const_name Not}, _) $ Const (@{const_name False}, _)) = make_nnf_not_false - | make_nnf_thm thy (Const (@{const_name "Not"}, _) $ Const (@{const_name "True"}, _)) = + | make_nnf_thm thy (Const (@{const_name Not}, _) $ Const (@{const_name True}, _)) = make_nnf_not_true - | make_nnf_thm thy (Const (@{const_name "Not"}, _) $ (Const (@{const_name "op &"}, _) $ x $ y)) = + | make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name "op &"}, _) $ x $ y)) = let val thm1 = make_nnf_thm thy (HOLogic.Not $ x) val thm2 = make_nnf_thm thy (HOLogic.Not $ y) in make_nnf_not_conj OF [thm1, thm2] end - | make_nnf_thm thy (Const (@{const_name "Not"}, _) $ (Const (@{const_name "op |"}, _) $ x $ y)) = + | make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name "op |"}, _) $ x $ y)) = let val thm1 = make_nnf_thm thy (HOLogic.Not $ x) val thm2 = make_nnf_thm thy (HOLogic.Not $ y) in make_nnf_not_disj OF [thm1, thm2] end - | make_nnf_thm thy (Const (@{const_name "Not"}, _) $ (Const (@{const_name "op -->"}, _) $ x $ y)) = + | make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name "op -->"}, _) $ x $ y)) = let val thm1 = make_nnf_thm thy x val thm2 = make_nnf_thm thy (HOLogic.Not $ y) in make_nnf_not_imp OF [thm1, thm2] end - | make_nnf_thm thy (Const (@{const_name "Not"}, _) $ (Const (@{const_name "op ="}, Type ("fun", @{typ bool} :: _)) $ x $ y)) = + | make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name "op ="}, Type ("fun", @{typ bool} :: _)) $ x $ y)) = let val thm1 = make_nnf_thm thy x val thm2 = make_nnf_thm thy (HOLogic.Not $ x) @@ -248,7 +248,7 @@ in make_nnf_not_iff OF [thm1, thm2, thm3, thm4] end - | make_nnf_thm thy (Const (@{const_name "Not"}, _) $ (Const (@{const_name "Not"}, _) $ x)) = + | make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name Not}, _) $ x)) = let val thm1 = make_nnf_thm thy x in @@ -430,7 +430,7 @@ in make_cnf_disj_conj_r OF [thm1, thm2] (* (x' | (y1 & y2)) = ((x' | y1)' & (x' | y2)') *) end - | make_cnfx_disj_thm (Const (@{const_name "Ex"}, _) $ x') y' = + | make_cnfx_disj_thm (Const (@{const_name Ex}, _) $ x') y' = let val thm1 = inst_thm thy [x', y'] make_cnfx_disj_ex_l (* ((Ex x') | y') = (Ex (x' | y')) *) val var = new_free () @@ -441,7 +441,7 @@ in iff_trans OF [thm1, thm5] (* ((Ex x') | y') = (Ex v. body') *) end - | make_cnfx_disj_thm x' (Const (@{const_name "Ex"}, _) $ y') = + | make_cnfx_disj_thm x' (Const (@{const_name Ex}, _) $ y') = let val thm1 = inst_thm thy [x', y'] make_cnfx_disj_ex_r (* (x' | (Ex y')) = (Ex (x' | y')) *) val var = new_free ()