diff -r c7dfd924a165 -r 32b7eafc5a52 src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Tue Mar 18 11:58:30 2014 -0700 +++ b/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space.thy Tue Mar 18 09:39:07 2014 -0700 @@ -467,11 +467,10 @@ proof - let ?M = "(UNIV :: 'm set)" let ?N = "(UNIV :: 'n set)" - have fM: "finite ?M" by simp have "?rhs = (setsum (\i.(x$i) *\<^sub>R f (axis i 1) ) ?M)$j" unfolding setsum_component by simp then show ?thesis - unfolding linear_setsum_mul[OF lf fM, symmetric] + unfolding linear_setsum_mul[OF lf, symmetric] unfolding scalar_mult_eq_scaleR[symmetric] unfolding basis_expansion by simp @@ -674,7 +673,7 @@ where y: "setsum (\i. (y$i) *s column i A) ?U = x" by blast have "x \ span (columns A)" unfolding y[symmetric] - apply (rule span_setsum[OF fU]) + apply (rule span_setsum) apply clarify unfolding scalar_mult_eq_scaleR apply (rule span_mul)