diff -r 806e0390de53 -r 33439faadd67 src/HOL/NthRoot.thy --- a/src/HOL/NthRoot.thy Fri Aug 19 18:42:41 2011 -0700 +++ b/src/HOL/NthRoot.thy Fri Aug 19 19:01:00 2011 -0700 @@ -518,12 +518,6 @@ apply (rule real_sqrt_abs) done -lemma real_sqrt_pow2_gt_zero: "0 < x ==> 0 < (sqrt x)\" -by simp (* TODO: delete *) - -lemma real_sqrt_not_eq_zero: "0 < x ==> sqrt x \ 0" -by simp (* TODO: delete *) - lemma real_inv_sqrt_pow2: "0 < x ==> inverse (sqrt(x)) ^ 2 = inverse x" by (simp add: power_inverse [symmetric]) @@ -533,15 +527,6 @@ lemma real_sqrt_ge_one: "1 \ x ==> 1 \ sqrt x" by simp -lemma real_sqrt_two_gt_zero [simp]: "0 < sqrt 2" -by simp - -lemma real_sqrt_two_ge_zero [simp]: "0 \ sqrt 2" -by simp - -lemma real_sqrt_two_gt_one [simp]: "1 < sqrt 2" -by simp - lemma sqrt_divide_self_eq: assumes nneg: "0 \ x" shows "sqrt x / x = inverse (sqrt x)" @@ -575,21 +560,18 @@ subsection {* Square Root of Sum of Squares *} -lemma real_sqrt_mult_self_sum_ge_zero [simp]: "0 \ sqrt(x*x + y*y)" -by (rule real_sqrt_ge_zero [OF sum_squares_ge_zero]) - -lemma real_sqrt_sum_squares_ge_zero [simp]: "0 \ sqrt (x\ + y\)" -by simp +lemma real_sqrt_sum_squares_ge_zero: "0 \ sqrt (x\ + y\)" + by simp (* TODO: delete *) declare real_sqrt_sum_squares_ge_zero [THEN abs_of_nonneg, simp] lemma real_sqrt_sum_squares_mult_ge_zero [simp]: "0 \ sqrt ((x\ + y\)*(xa\ + ya\))" -by (auto intro!: real_sqrt_ge_zero simp add: zero_le_mult_iff) + by (simp add: zero_le_mult_iff) lemma real_sqrt_sum_squares_mult_squared_eq [simp]: "sqrt ((x\ + y\) * (xa\ + ya\)) ^ 2 = (x\ + y\) * (xa\ + ya\)" -by (auto simp add: zero_le_mult_iff) + by (simp add: zero_le_mult_iff) lemma real_sqrt_sum_squares_eq_cancel: "sqrt (x\ + y\) = x \ y = 0" by (drule_tac f = "%x. x\" in arg_cong, simp)