diff -r fe13743ffc8b -r 3370f6aa3200 doc-src/TutorialI/Misc/document/AdvancedInd.tex --- a/doc-src/TutorialI/Misc/document/AdvancedInd.tex Mon Sep 11 17:59:53 2000 +0200 +++ b/doc-src/TutorialI/Misc/document/AdvancedInd.tex Mon Sep 11 18:00:47 2000 +0200 @@ -1,5 +1,6 @@ % \begin{isabellebody}% +\def\isabellecontext{AdvancedInd}% % \begin{isamarkuptext}% \noindent @@ -85,16 +86,16 @@ \begin{isamarkuptext}% \noindent or the wholesale stripping of \isa{{\isasymforall}} and -\isa{{\isasymlongrightarrow}} in the conclusion via \isa{rulify}% +\isa{{\isasymlongrightarrow}} in the conclusion via \isa{rulified}% \end{isamarkuptext}% -\isacommand{lemmas}\ myrule\ {\isacharequal}\ simple{\isacharbrackleft}rulify{\isacharbrackright}% +\isacommand{lemmas}\ myrule\ {\isacharequal}\ simple{\isacharbrackleft}rulified{\isacharbrackright}% \begin{isamarkuptext}% \noindent yielding \isa{{\isasymlbrakk}A\ y{\isacharsemicolon}\ B\ y{\isasymrbrakk}\ {\isasymLongrightarrow}\ B\ y\ {\isasymand}\ A\ y}. You can go one step further and include these derivations already in the statement of your original lemma, thus avoiding the intermediate step:% \end{isamarkuptext}% -\isacommand{lemma}\ myrule{\isacharbrackleft}rulify{\isacharbrackright}{\isacharcolon}\ \ {\isachardoublequote}{\isasymforall}y{\isachardot}\ A\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymlongrightarrow}\ B\ y\ {\isacharampersand}\ A\ y{\isachardoublequote}% +\isacommand{lemma}\ myrule{\isacharbrackleft}rulified{\isacharbrackright}{\isacharcolon}\ \ {\isachardoublequote}{\isasymforall}y{\isachardot}\ A\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymlongrightarrow}\ B\ y\ {\isacharampersand}\ A\ y{\isachardoublequote}% \begin{isamarkuptext}% \bigskip @@ -119,12 +120,10 @@ Structural induction on \isa{nat} is usually known as ``mathematical induction''. There is also ``complete induction'', where you must prove $P(n)$ under the assumption that $P(m)$ -holds for all $m