diff -r c1048f5bbb45 -r 3373f5d1e074 src/HOL/Transfer.thy --- a/src/HOL/Transfer.thy Thu Apr 10 17:48:15 2014 +0200 +++ b/src/HOL/Transfer.thy Thu Apr 10 17:48:15 2014 +0200 @@ -128,10 +128,9 @@ lemma Domaimp_refl[transfer_domain_rule]: "Domainp T = Domainp T" .. -lemma Domainp_prod_fun_eq[transfer_domain_rule]: - assumes "Domainp T = P" - shows "Domainp (op= ===> T) = (\f. \x. P (f x))" -by (auto intro: choice simp: assms[symmetric] Domainp_iff rel_fun_def fun_eq_iff) +lemma Domainp_prod_fun_eq[relator_domain]: + "Domainp (op= ===> T) = (\f. \x. (Domainp T) (f x))" +by (auto intro: choice simp: Domainp_iff rel_fun_def fun_eq_iff) subsection {* Predicates on relations, i.e. ``class constraints'' *}