diff -r 375db037f4d2 -r 341c83339aeb src/HOL/Library/Formal_Power_Series.thy --- a/src/HOL/Library/Formal_Power_Series.thy Sat Aug 29 14:31:39 2009 +0200 +++ b/src/HOL/Library/Formal_Power_Series.thy Mon Aug 31 14:09:42 2009 +0200 @@ -633,8 +633,7 @@ by (auto simp add: inverse_eq_divide power_divide) from k have kn: "k > n" - apply (simp add: leastP_def setge_def fps_sum_rep_nth) - by (cases "k \ n", auto) + by (simp add: leastP_def setge_def fps_sum_rep_nth split:split_if_asm) then have "dist (?s n) a < (1/2)^n" unfolding dth by (auto intro: power_strict_decreasing) also have "\ <= (1/2)^n0" using nn0 @@ -1244,10 +1243,9 @@ {assume n0: "n \ 0" then have u: "{0} \ ({1} \ {2..n}) = {0..n}" "{1}\{2..n} = {1..n}" "{0..n - 1}\{n} = {0..n}" - apply (simp_all add: expand_set_eq) by presburger+ + by (auto simp: expand_set_eq) have d: "{0} \ ({1} \ {2..n}) = {}" "{1} \ {2..n} = {}" - "{0..n - 1}\{n} ={}" using n0 - by (simp_all add: expand_set_eq, presburger+) + "{0..n - 1}\{n} ={}" using n0 by simp_all have f: "finite {0}" "finite {1}" "finite {2 .. n}" "finite {0 .. n - 1}" "finite {n}" by simp_all have "((1 - ?X) * ?sa) $ n = setsum (\i. (1 - ?X)$ i * ?sa $ (n - i)) {0 .. n}"