diff -r 28fa57b57209 -r 34264f5e4691 src/HOL/Integ/Numeral.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Integ/Numeral.thy Thu Jul 01 12:29:53 2004 +0200 @@ -0,0 +1,505 @@ +(* Title: HOL/Integ/Numeral.thy + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1994 University of Cambridge +*) + +header{*Arithmetic on Binary Integers*} + +theory Numeral = IntDef +files "Tools/numeral_syntax.ML": + +text{* The file @{text numeral_syntax.ML} hides the constructors Pls and Min. + Only qualified access Numeral.Pls and Numeral.Min is allowed. + We do not hide Bit because we need the BIT infix syntax.*} + +text{*This formalization defines binary arithmetic in terms of the integers +rather than using a datatype. This avoids multiple representations (leading +zeroes, etc.) See @{text "ZF/Integ/twos-compl.ML"}, function @{text +int_of_binary}, for the numerical interpretation. + +The representation expects that @{text "(m mod 2)"} is 0 or 1, +even if m is negative; +For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus +@{text "-5 = (-3)*2 + 1"}. +*} + + +typedef (Bin) + bin = "UNIV::int set" + by (auto) + +constdefs + Pls :: "bin" + "Pls == Abs_Bin 0" + + Min :: "bin" + "Min == Abs_Bin (- 1)" + + Bit :: "[bin,bool] => bin" (infixl "BIT" 90) + --{*That is, 2w+b*} + "w BIT b == Abs_Bin ((if b then 1 else 0) + Rep_Bin w + Rep_Bin w)" + + +axclass + number < type -- {* for numeric types: nat, int, real, \dots *} + +consts + number_of :: "bin => 'a::number" + +syntax + "_Numeral" :: "num_const => 'a" ("_") + Numeral0 :: 'a + Numeral1 :: 'a + +translations + "Numeral0" == "number_of Numeral.Pls" + "Numeral1" == "number_of (Numeral.Pls BIT True)" + + +setup NumeralSyntax.setup + +syntax (xsymbols) + "_square" :: "'a => 'a" ("(_\)" [1000] 999) +syntax (HTML output) + "_square" :: "'a => 'a" ("(_\)" [1000] 999) +syntax (output) + "_square" :: "'a => 'a" ("(_ ^/ 2)" [81] 80) +translations + "x\" == "x^2" + "x\" <= "x^(2::nat)" + + +lemma Let_number_of [simp]: "Let (number_of v) f == f (number_of v)" + -- {* Unfold all @{text let}s involving constants *} + by (simp add: Let_def) + +lemma Let_0 [simp]: "Let 0 f == f 0" + by (simp add: Let_def) + +lemma Let_1 [simp]: "Let 1 f == f 1" + by (simp add: Let_def) + + +constdefs + bin_succ :: "bin=>bin" + "bin_succ w == Abs_Bin(Rep_Bin w + 1)" + + bin_pred :: "bin=>bin" + "bin_pred w == Abs_Bin(Rep_Bin w - 1)" + + bin_minus :: "bin=>bin" + "bin_minus w == Abs_Bin(- (Rep_Bin w))" + + bin_add :: "[bin,bin]=>bin" + "bin_add v w == Abs_Bin(Rep_Bin v + Rep_Bin w)" + + bin_mult :: "[bin,bin]=>bin" + "bin_mult v w == Abs_Bin(Rep_Bin v * Rep_Bin w)" + + +lemmas Bin_simps = + bin_succ_def bin_pred_def bin_minus_def bin_add_def bin_mult_def + Pls_def Min_def Bit_def Abs_Bin_inverse Rep_Bin_inverse Bin_def + +text{*Removal of leading zeroes*} +lemma Pls_0_eq [simp]: "Numeral.Pls BIT False = Numeral.Pls" +by (simp add: Bin_simps) + +lemma Min_1_eq [simp]: "Numeral.Min BIT True = Numeral.Min" +by (simp add: Bin_simps) + +subsection{*The Functions @{term bin_succ}, @{term bin_pred} and @{term bin_minus}*} + +lemma bin_succ_Pls [simp]: "bin_succ Numeral.Pls = Numeral.Pls BIT True" +by (simp add: Bin_simps) + +lemma bin_succ_Min [simp]: "bin_succ Numeral.Min = Numeral.Pls" +by (simp add: Bin_simps) + +lemma bin_succ_1 [simp]: "bin_succ(w BIT True) = (bin_succ w) BIT False" +by (simp add: Bin_simps add_ac) + +lemma bin_succ_0 [simp]: "bin_succ(w BIT False) = w BIT True" +by (simp add: Bin_simps add_ac) + +lemma bin_pred_Pls [simp]: "bin_pred Numeral.Pls = Numeral.Min" +by (simp add: Bin_simps) + +lemma bin_pred_Min [simp]: "bin_pred Numeral.Min = Numeral.Min BIT False" +by (simp add: Bin_simps diff_minus) + +lemma bin_pred_1 [simp]: "bin_pred(w BIT True) = w BIT False" +by (simp add: Bin_simps) + +lemma bin_pred_0 [simp]: "bin_pred(w BIT False) = (bin_pred w) BIT True" +by (simp add: Bin_simps diff_minus add_ac) + +lemma bin_minus_Pls [simp]: "bin_minus Numeral.Pls = Numeral.Pls" +by (simp add: Bin_simps) + +lemma bin_minus_Min [simp]: "bin_minus Numeral.Min = Numeral.Pls BIT True" +by (simp add: Bin_simps) + +lemma bin_minus_1 [simp]: + "bin_minus (w BIT True) = bin_pred (bin_minus w) BIT True" +by (simp add: Bin_simps add_ac diff_minus) + + lemma bin_minus_0 [simp]: "bin_minus(w BIT False) = (bin_minus w) BIT False" +by (simp add: Bin_simps) + + +subsection{*Binary Addition and Multiplication: + @{term bin_add} and @{term bin_mult}*} + +lemma bin_add_Pls [simp]: "bin_add Numeral.Pls w = w" +by (simp add: Bin_simps) + +lemma bin_add_Min [simp]: "bin_add Numeral.Min w = bin_pred w" +by (simp add: Bin_simps diff_minus add_ac) + +lemma bin_add_BIT_11 [simp]: + "bin_add (v BIT True) (w BIT True) = bin_add v (bin_succ w) BIT False" +by (simp add: Bin_simps add_ac) + +lemma bin_add_BIT_10 [simp]: + "bin_add (v BIT True) (w BIT False) = (bin_add v w) BIT True" +by (simp add: Bin_simps add_ac) + +lemma bin_add_BIT_0 [simp]: + "bin_add (v BIT False) (w BIT y) = bin_add v w BIT y" +by (simp add: Bin_simps add_ac) + +lemma bin_add_Pls_right [simp]: "bin_add w Numeral.Pls = w" +by (simp add: Bin_simps) + +lemma bin_add_Min_right [simp]: "bin_add w Numeral.Min = bin_pred w" +by (simp add: Bin_simps diff_minus) + +lemma bin_mult_Pls [simp]: "bin_mult Numeral.Pls w = Numeral.Pls" +by (simp add: Bin_simps) + +lemma bin_mult_Min [simp]: "bin_mult Numeral.Min w = bin_minus w" +by (simp add: Bin_simps) + +lemma bin_mult_1 [simp]: + "bin_mult (v BIT True) w = bin_add ((bin_mult v w) BIT False) w" +by (simp add: Bin_simps add_ac left_distrib) + +lemma bin_mult_0 [simp]: "bin_mult (v BIT False) w = (bin_mult v w) BIT False" +by (simp add: Bin_simps left_distrib) + + + +subsection{*Converting Numerals to Rings: @{term number_of}*} + +axclass number_ring \ number, comm_ring_1 + number_of_eq: "number_of w = of_int (Rep_Bin w)" + +lemma number_of_succ: + "number_of(bin_succ w) = (1 + number_of w ::'a::number_ring)" +by (simp add: number_of_eq Bin_simps) + +lemma number_of_pred: + "number_of(bin_pred w) = (- 1 + number_of w ::'a::number_ring)" +by (simp add: number_of_eq Bin_simps) + +lemma number_of_minus: + "number_of(bin_minus w) = (- (number_of w)::'a::number_ring)" +by (simp add: number_of_eq Bin_simps) + +lemma number_of_add: + "number_of(bin_add v w) = (number_of v + number_of w::'a::number_ring)" +by (simp add: number_of_eq Bin_simps) + +lemma number_of_mult: + "number_of(bin_mult v w) = (number_of v * number_of w::'a::number_ring)" +by (simp add: number_of_eq Bin_simps) + +text{*The correctness of shifting. But it doesn't seem to give a measurable + speed-up.*} +lemma double_number_of_BIT: + "(1+1) * number_of w = (number_of (w BIT False) ::'a::number_ring)" +by (simp add: number_of_eq Bin_simps left_distrib) + +text{*Converting numerals 0 and 1 to their abstract versions*} +lemma numeral_0_eq_0 [simp]: "Numeral0 = (0::'a::number_ring)" +by (simp add: number_of_eq Bin_simps) + +lemma numeral_1_eq_1 [simp]: "Numeral1 = (1::'a::number_ring)" +by (simp add: number_of_eq Bin_simps) + +text{*Special-case simplification for small constants*} + +text{*Unary minus for the abstract constant 1. Cannot be inserted + as a simprule until later: it is @{text number_of_Min} re-oriented!*} +lemma numeral_m1_eq_minus_1: "(-1::'a::number_ring) = - 1" +by (simp add: number_of_eq Bin_simps) + + +lemma mult_minus1 [simp]: "-1 * z = -(z::'a::number_ring)" +by (simp add: numeral_m1_eq_minus_1) + +lemma mult_minus1_right [simp]: "z * -1 = -(z::'a::number_ring)" +by (simp add: numeral_m1_eq_minus_1) + +(*Negation of a coefficient*) +lemma minus_number_of_mult [simp]: + "- (number_of w) * z = number_of(bin_minus w) * (z::'a::number_ring)" +by (simp add: number_of_minus) + +text{*Subtraction*} +lemma diff_number_of_eq: + "number_of v - number_of w = + (number_of(bin_add v (bin_minus w))::'a::number_ring)" +by (simp add: diff_minus number_of_add number_of_minus) + + +lemma number_of_Pls: "number_of Numeral.Pls = (0::'a::number_ring)" +by (simp add: number_of_eq Bin_simps) + +lemma number_of_Min: "number_of Numeral.Min = (- 1::'a::number_ring)" +by (simp add: number_of_eq Bin_simps) + +lemma number_of_BIT: + "number_of(w BIT x) = (if x then 1 else (0::'a::number_ring)) + + (number_of w) + (number_of w)" +by (simp add: number_of_eq Bin_simps) + + + +subsection{*Equality of Binary Numbers*} + +text{*First version by Norbert Voelker*} + +lemma eq_number_of_eq: + "((number_of x::'a::number_ring) = number_of y) = + iszero (number_of (bin_add x (bin_minus y)) :: 'a)" +by (simp add: iszero_def compare_rls number_of_add number_of_minus) + +lemma iszero_number_of_Pls: "iszero ((number_of Numeral.Pls)::'a::number_ring)" +by (simp add: iszero_def numeral_0_eq_0) + +lemma nonzero_number_of_Min: "~ iszero ((number_of Numeral.Min)::'a::number_ring)" +by (simp add: iszero_def numeral_m1_eq_minus_1 eq_commute) + + +subsection{*Comparisons, for Ordered Rings*} + +lemma double_eq_0_iff: "(a + a = 0) = (a = (0::'a::ordered_idom))" +proof - + have "a + a = (1+1)*a" by (simp add: left_distrib) + with zero_less_two [where 'a = 'a] + show ?thesis by force +qed + +lemma le_imp_0_less: + assumes le: "0 \ z" shows "(0::int) < 1 + z" +proof - + have "0 \ z" . + also have "... < z + 1" by (rule less_add_one) + also have "... = 1 + z" by (simp add: add_ac) + finally show "0 < 1 + z" . +qed + +lemma odd_nonzero: "1 + z + z \ (0::int)"; +proof (cases z rule: int_cases) + case (nonneg n) + have le: "0 \ z+z" by (simp add: nonneg add_increasing) + thus ?thesis using le_imp_0_less [OF le] + by (auto simp add: add_assoc) +next + case (neg n) + show ?thesis + proof + assume eq: "1 + z + z = 0" + have "0 < 1 + (int n + int n)" + by (simp add: le_imp_0_less add_increasing) + also have "... = - (1 + z + z)" + by (simp add: neg add_assoc [symmetric]) + also have "... = 0" by (simp add: eq) + finally have "0<0" .. + thus False by blast + qed +qed + + +text{*The premise involving @{term Ints} prevents @{term "a = 1/2"}.*} +lemma Ints_odd_nonzero: "a \ Ints ==> 1 + a + a \ (0::'a::ordered_idom)" +proof (unfold Ints_def) + assume "a \ range of_int" + then obtain z where a: "a = of_int z" .. + show ?thesis + proof + assume eq: "1 + a + a = 0" + hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a) + hence "1 + z + z = 0" by (simp only: of_int_eq_iff) + with odd_nonzero show False by blast + qed +qed + +lemma Ints_number_of: "(number_of w :: 'a::number_ring) \ Ints" +by (simp add: number_of_eq Ints_def) + + +lemma iszero_number_of_BIT: + "iszero (number_of (w BIT x)::'a) = + (~x & iszero (number_of w::'a::{ordered_idom,number_ring}))" +by (simp add: iszero_def number_of_eq Bin_simps double_eq_0_iff + Ints_odd_nonzero Ints_def) + +lemma iszero_number_of_0: + "iszero (number_of (w BIT False) :: 'a::{ordered_idom,number_ring}) = + iszero (number_of w :: 'a)" +by (simp only: iszero_number_of_BIT simp_thms) + +lemma iszero_number_of_1: + "~ iszero (number_of (w BIT True)::'a::{ordered_idom,number_ring})" +by (simp only: iszero_number_of_BIT simp_thms) + + + +subsection{*The Less-Than Relation*} + +lemma less_number_of_eq_neg: + "((number_of x::'a::{ordered_idom,number_ring}) < number_of y) + = neg (number_of (bin_add x (bin_minus y)) :: 'a)" +apply (subst less_iff_diff_less_0) +apply (simp add: neg_def diff_minus number_of_add number_of_minus) +done + +text{*If @{term Numeral0} is rewritten to 0 then this rule can't be applied: + @{term Numeral0} IS @{term "number_of Numeral.Pls"} *} +lemma not_neg_number_of_Pls: + "~ neg (number_of Numeral.Pls ::'a::{ordered_idom,number_ring})" +by (simp add: neg_def numeral_0_eq_0) + +lemma neg_number_of_Min: + "neg (number_of Numeral.Min ::'a::{ordered_idom,number_ring})" +by (simp add: neg_def zero_less_one numeral_m1_eq_minus_1) + +lemma double_less_0_iff: "(a + a < 0) = (a < (0::'a::ordered_idom))" +proof - + have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib) + also have "... = (a < 0)" + by (simp add: mult_less_0_iff zero_less_two + order_less_not_sym [OF zero_less_two]) + finally show ?thesis . +qed + +lemma odd_less_0: "(1 + z + z < 0) = (z < (0::int))"; +proof (cases z rule: int_cases) + case (nonneg n) + thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing + le_imp_0_less [THEN order_less_imp_le]) +next + case (neg n) + thus ?thesis by (simp del: int_Suc + add: int_Suc0_eq_1 [symmetric] zadd_int compare_rls) +qed + +text{*The premise involving @{term Ints} prevents @{term "a = 1/2"}.*} +lemma Ints_odd_less_0: + "a \ Ints ==> (1 + a + a < 0) = (a < (0::'a::ordered_idom))"; +proof (unfold Ints_def) + assume "a \ range of_int" + then obtain z where a: "a = of_int z" .. + hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))" + by (simp add: a) + also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0) + also have "... = (a < 0)" by (simp add: a) + finally show ?thesis . +qed + +lemma neg_number_of_BIT: + "neg (number_of (w BIT x)::'a) = + neg (number_of w :: 'a::{ordered_idom,number_ring})" +by (simp add: neg_def number_of_eq Bin_simps double_less_0_iff + Ints_odd_less_0 Ints_def) + + +text{*Less-Than or Equals*} + +text{*Reduces @{term "a\b"} to @{term "~ (b number_of y) + = (~ (neg (number_of (bin_add y (bin_minus x)) :: 'a)))" +by (simp add: le_number_of_eq_not_less less_number_of_eq_neg) + + +text{*Absolute value (@{term abs})*} + +lemma abs_number_of: + "abs(number_of x::'a::{ordered_idom,number_ring}) = + (if number_of x < (0::'a) then -number_of x else number_of x)" +by (simp add: abs_if) + + +text{*Re-orientation of the equation nnn=x*} +lemma number_of_reorient: "(number_of w = x) = (x = number_of w)" +by auto + + + + +subsection{*Simplification of arithmetic operations on integer constants.*} + +lemmas bin_arith_extra_simps = + number_of_add [symmetric] + number_of_minus [symmetric] numeral_m1_eq_minus_1 [symmetric] + number_of_mult [symmetric] + diff_number_of_eq abs_number_of + +text{*For making a minimal simpset, one must include these default simprules. + Also include @{text simp_thms} or at least @{term "(~False)=True"} *} +lemmas bin_arith_simps = + Pls_0_eq Min_1_eq + bin_pred_Pls bin_pred_Min bin_pred_1 bin_pred_0 + bin_succ_Pls bin_succ_Min bin_succ_1 bin_succ_0 + bin_add_Pls bin_add_Min bin_add_BIT_0 bin_add_BIT_10 bin_add_BIT_11 + bin_minus_Pls bin_minus_Min bin_minus_1 bin_minus_0 + bin_mult_Pls bin_mult_Min bin_mult_1 bin_mult_0 + bin_add_Pls_right bin_add_Min_right + abs_zero abs_one bin_arith_extra_simps + +text{*Simplification of relational operations*} +lemmas bin_rel_simps = + eq_number_of_eq iszero_number_of_Pls nonzero_number_of_Min + iszero_number_of_0 iszero_number_of_1 + less_number_of_eq_neg + not_neg_number_of_Pls not_neg_0 not_neg_1 not_iszero_1 + neg_number_of_Min neg_number_of_BIT + le_number_of_eq + +declare bin_arith_extra_simps [simp] +declare bin_rel_simps [simp] + + +subsection{*Simplification of arithmetic when nested to the right*} + +lemma add_number_of_left [simp]: + "number_of v + (number_of w + z) = + (number_of(bin_add v w) + z::'a::number_ring)" +by (simp add: add_assoc [symmetric]) + +lemma mult_number_of_left [simp]: + "number_of v * (number_of w * z) = + (number_of(bin_mult v w) * z::'a::number_ring)" +by (simp add: mult_assoc [symmetric]) + +lemma add_number_of_diff1: + "number_of v + (number_of w - c) = + number_of(bin_add v w) - (c::'a::number_ring)" +by (simp add: diff_minus add_number_of_left) + +lemma add_number_of_diff2 [simp]: "number_of v + (c - number_of w) = + number_of (bin_add v (bin_minus w)) + (c::'a::number_ring)" +apply (subst diff_number_of_eq [symmetric]) +apply (simp only: compare_rls) +done + +end