diff -r 2514f0ade8bc -r 345465cc9e79 src/HOL/Library/Primes.thy --- a/src/HOL/Library/Primes.thy Mon Feb 25 11:27:27 2008 +0100 +++ b/src/HOL/Library/Primes.thy Mon Feb 25 11:59:57 2008 +0100 @@ -1,13 +1,13 @@ (* Title: HOL/Library/Primes.thy ID: $Id$ - Author: Christophe Tabacznyj and Lawrence C Paulson + Author: Amine Chaieb Christophe Tabacznyj and Lawrence C Paulson Copyright 1996 University of Cambridge *) header {* Primality on nat *} theory Primes -imports GCD ATP_Linkup +imports GCD Parity begin definition @@ -45,4 +45,999 @@ lemma prime_dvd_power_two: "prime p ==> p dvd m\ ==> p dvd m" by (rule prime_dvd_square) (simp_all add: power2_eq_square) + +lemma exp_eq_1:"(x::nat)^n = 1 \ x = 1 \ n = 0" by (induct n, auto) +lemma exp_mono_lt: "(x::nat) ^ (Suc n) < y ^ (Suc n) \ x < y" + using power_less_imp_less_base[of x "Suc n" y] power_strict_mono[of x y "Suc n"] + by auto +lemma exp_mono_le: "(x::nat) ^ (Suc n) \ y ^ (Suc n) \ x \ y" + by (simp only: linorder_not_less[symmetric] exp_mono_lt) + +lemma exp_mono_eq: "(x::nat) ^ Suc n = y ^ Suc n \ x = y" +using power_inject_base[of x n y] by auto + + +lemma even_square: assumes e: "even (n::nat)" shows "\x. n ^ 2 = 4*x" +proof- + from e have "2 dvd n" by presburger + then obtain k where k: "n = 2*k" using dvd_def by auto + hence "n^2 = 4* (k^2)" by (simp add: power2_eq_square) + thus ?thesis by blast +qed + +lemma odd_square: assumes e: "odd (n::nat)" shows "\x. n ^ 2 = 4*x + 1" +proof- + from e have np: "n > 0" by presburger + from e have "2 dvd (n - 1)" by presburger + then obtain k where "n - 1 = 2*k" using dvd_def by auto + hence k: "n = 2*k + 1" using e by presburger + hence "n^2 = 4* (k^2 + k) + 1" by algebra + thus ?thesis by blast +qed + +lemma diff_square: "(x::nat)^2 - y^2 = (x+y)*(x - y)" +proof- + have "x \ y \ y \ x" by (rule nat_le_linear) + moreover + {assume le: "x \ y" + hence "x ^2 \ y^2" by (simp only: numeral_2_eq_2 exp_mono_le Let_def) + with le have ?thesis by simp } + moreover + {assume le: "y \ x" + hence le2: "y ^2 \ x^2" by (simp only: numeral_2_eq_2 exp_mono_le Let_def) + from le have "\z. y + z = x" by presburger + then obtain z where z: "x = y + z" by blast + from le2 have "\z. x^2 = y^2 + z" by presburger + then obtain z2 where z2: "x^2 = y^2 + z2" by blast + from z z2 have ?thesis apply simp by algebra } + ultimately show ?thesis by blast +qed + +(* Elementary theory of divisibility *) +lemma divides_ge: "(a::nat) dvd b \ b = 0 \ a \ b" unfolding dvd_def by auto +lemma divides_antisym: "(x::nat) dvd y \ y dvd x \ x = y" + using dvd_anti_sym[of x y] by auto + +lemma divides_add_revr: assumes da: "(d::nat) dvd a" and dab:"d dvd (a + b)" + shows "d dvd b" +proof- + from da obtain k where k:"a = d*k" by (auto simp add: dvd_def) + from dab obtain k' where k': "a + b = d*k'" by (auto simp add: dvd_def) + from k k' have "b = d *(k' - k)" by (simp add : diff_mult_distrib2) + thus ?thesis unfolding dvd_def by blast +qed + +declare nat_mult_dvd_cancel_disj[presburger] +lemma nat_mult_dvd_cancel_disj'[presburger]: + "(m\nat)*k dvd n*k \ k = 0 \ m dvd n" unfolding mult_commute[of m k] mult_commute[of n k] by presburger + +lemma divides_mul_l: "(a::nat) dvd b ==> (c * a) dvd (c * b)" + by presburger + +lemma divides_mul_r: "(a::nat) dvd b ==> (a * c) dvd (b * c)" by presburger +lemma divides_cases: "(n::nat) dvd m ==> m = 0 \ m = n \ 2 * n <= m" + by (auto simp add: dvd_def) +lemma divides_le: "m dvd n ==> m <= n \ n = (0::nat)" by (auto simp add: dvd_def) + +lemma divides_div_not: "(x::nat) = (q * n) + r \ 0 < r \ r < n ==> ~(n dvd x)" +proof(auto simp add: dvd_def) + fix k assume H: "0 < r" "r < n" "q * n + r = n * k" + from H(3) have r: "r = n* (k -q)" by(simp add: diff_mult_distrib2 mult_commute) + {assume "k - q = 0" with r H(1) have False by simp} + moreover + {assume "k - q \ 0" with r have "r \ n" by auto + with H(2) have False by simp} + ultimately show False by blast +qed +lemma divides_exp: "(x::nat) dvd y ==> x ^ n dvd y ^ n" + by (auto simp add: power_mult_distrib dvd_def) + +lemma divides_exp2: "n \ 0 \ (x::nat) ^ n dvd y \ x dvd y" + by (induct n ,auto simp add: dvd_def) + +fun fact :: "nat \ nat" where + "fact 0 = 1" +| "fact (Suc n) = Suc n * fact n" + +lemma fact_lt: "0 < fact n" by(induct n, simp_all) +lemma fact_le: "fact n \ 1" using fact_lt[of n] by simp +lemma fact_mono: assumes le: "m \ n" shows "fact m \ fact n" +proof- + from le have "\i. n = m+i" by presburger + then obtain i where i: "n = m+i" by blast + have "fact m \ fact (m + i)" + proof(induct m) + case 0 thus ?case using fact_le[of i] by simp + next + case (Suc m) + have "fact (Suc m) = Suc m * fact m" by simp + have th1: "Suc m \ Suc (m + i)" by simp + from mult_le_mono[of "Suc m" "Suc (m+i)" "fact m" "fact (m+i)", OF th1 Suc.hyps] + show ?case by simp + qed + thus ?thesis using i by simp +qed + +lemma divides_fact: "1 <= p \ p <= n ==> p dvd fact n" +proof(induct n arbitrary: p) + case 0 thus ?case by simp +next + case (Suc n p) + from Suc.prems have "p = Suc n \ p \ n" by presburger + moreover + {assume "p = Suc n" hence ?case by (simp only: fact.simps dvd_triv_left)} + moreover + {assume "p \ n" + with Suc.prems(1) Suc.hyps have th: "p dvd fact n" by simp + from dvd_mult[OF th] have ?case by (simp only: fact.simps) } + ultimately show ?case by blast +qed + +declare dvd_triv_left[presburger] +declare dvd_triv_right[presburger] +lemma divides_rexp: + "x dvd y \ (x::nat) dvd (y^(Suc n))" by (simp add: dvd_mult2[of x y]) + +(* The Bezout theorem is a bit ugly for N; it'd be easier for Z *) +lemma ind_euclid: + assumes c: " \a b. P (a::nat) b \ P b a" and z: "\a. P a 0" + and add: "\a b. P a b \ P a (a + b)" + shows "P a b" +proof(induct n\"a+b" arbitrary: a b rule: nat_less_induct) + fix n a b + assume H: "\m < n. \a b. m = a + b \ P a b" "n = a + b" + have "a = b \ a < b \ b < a" by arith + moreover {assume eq: "a= b" + from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq by simp} + moreover + {assume lt: "a < b" + hence "a + b - a < n \ a = 0" using H(2) by arith + moreover + {assume "a =0" with z c have "P a b" by blast } + moreover + {assume ab: "a + b - a < n" + have th0: "a + b - a = a + (b - a)" using lt by arith + from add[rule_format, OF H(1)[rule_format, OF ab th0]] + have "P a b" by (simp add: th0[symmetric])} + ultimately have "P a b" by blast} + moreover + {assume lt: "a > b" + hence "b + a - b < n \ b = 0" using H(2) by arith + moreover + {assume "b =0" with z c have "P a b" by blast } + moreover + {assume ab: "b + a - b < n" + have th0: "b + a - b = b + (a - b)" using lt by arith + from add[rule_format, OF H(1)[rule_format, OF ab th0]] + have "P b a" by (simp add: th0[symmetric]) + hence "P a b" using c by blast } + ultimately have "P a b" by blast} +ultimately show "P a b" by blast +qed + +lemma bezout_lemma: + assumes ex: "\(d::nat) x y. d dvd a \ d dvd b \ (a * x = b * y + d \ b * x = a * y + d)" + shows "\d x y. d dvd a \ d dvd a + b \ (a * x = (a + b) * y + d \ (a + b) * x = a * y + d)" +using ex +apply clarsimp +apply (rule_tac x="d" in exI, simp add: dvd_add) +apply (case_tac "a * x = b * y + d" , simp_all) +apply (rule_tac x="x + y" in exI) +apply (rule_tac x="y" in exI) +apply algebra +apply (rule_tac x="x" in exI) +apply (rule_tac x="x + y" in exI) +apply algebra +done + +lemma bezout_add: "\(d::nat) x y. d dvd a \ d dvd b \ (a * x = b * y + d \ b * x = a * y + d)" +apply(induct a b rule: ind_euclid) +apply blast +apply clarify +apply (rule_tac x="a" in exI, simp add: dvd_add) +apply clarsimp +apply (rule_tac x="d" in exI) +apply (case_tac "a * x = b * y + d", simp_all add: dvd_add) +apply (rule_tac x="x+y" in exI) +apply (rule_tac x="y" in exI) +apply algebra +apply (rule_tac x="x" in exI) +apply (rule_tac x="x+y" in exI) +apply algebra +done + +lemma bezout: "\(d::nat) x y. d dvd a \ d dvd b \ (a * x - b * y = d \ b * x - a * y = d)" +using bezout_add[of a b] +apply clarsimp +apply (rule_tac x="d" in exI, simp) +apply (rule_tac x="x" in exI) +apply (rule_tac x="y" in exI) +apply auto +done + +(* We can get a stronger version with a nonzeroness assumption. *) + +lemma bezout_add_strong: assumes nz: "a \ (0::nat)" + shows "\d x y. d dvd a \ d dvd b \ a * x = b * y + d" +proof- + from nz have ap: "a > 0" by simp + from bezout_add[of a b] + have "(\d x y. d dvd a \ d dvd b \ a * x = b * y + d) \ (\d x y. d dvd a \ d dvd b \ b * x = a * y + d)" by blast + moreover + {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d" + from H have ?thesis by blast } + moreover + {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d" + {assume b0: "b = 0" with H have ?thesis by simp} + moreover + {assume b: "b \ 0" hence bp: "b > 0" by simp + from divides_le[OF H(2)] b have "d < b \ d = b" using le_less by blast + moreover + {assume db: "d=b" + from prems have ?thesis apply simp + apply (rule exI[where x = b], simp) + apply (rule exI[where x = b]) + by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)} + moreover + {assume db: "d < b" + {assume "x=0" hence ?thesis using prems by simp } + moreover + {assume x0: "x \ 0" hence xp: "x > 0" by simp + + from db have "d \ b - 1" by simp + hence "d*b \ b*(b - 1)" by simp + with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"] + have dble: "d*b \ x*b*(b - 1)" using bp by simp + from H (3) have "d + (b - 1) * (b*x) = d + (b - 1) * (a*y + d)" by simp + hence "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" + by (simp only: mult_assoc right_distrib) + hence "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)" by algebra + hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp + hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)" + by (simp only: diff_add_assoc[OF dble, of d, symmetric]) + hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d" + by (simp only: diff_mult_distrib2 add_commute mult_ac) + hence ?thesis using H(1,2) + apply - + apply (rule exI[where x=d], simp) + apply (rule exI[where x="(b - 1) * y"]) + by (rule exI[where x="x*(b - 1) - d"], simp)} + ultimately have ?thesis by blast} + ultimately have ?thesis by blast} + ultimately have ?thesis by blast} + ultimately show ?thesis by blast +qed + +(* Greatest common divisor. *) +lemma gcd_unique: "d dvd a\d dvd b \ (\e. e dvd a \ e dvd b \ e dvd d) \ d = gcd(a,b)" +proof(auto) + assume H: "d dvd a" "d dvd b" "\e. e dvd a \ e dvd b \ e dvd d" + from H(3)[rule_format] gcd_dvd1[of a b] gcd_dvd2[of a b] + have th: "gcd (a,b) dvd d" by blast + from dvd_anti_sym[OF th gcd_greatest[OF H(1,2)]] show "d = gcd (a,b)" by blast +qed + +lemma gcd_eq: assumes H: "\d. d dvd x \ d dvd y \ d dvd u \ d dvd v" + shows "gcd (x,y) = gcd(u,v)" +proof- + from H have "\d. d dvd x \ d dvd y \ d dvd gcd (u,v)" by simp + with gcd_unique[of "gcd(u,v)" x y] show ?thesis by auto +qed + +lemma bezout_gcd: "\x y. a * x - b * y = gcd(a,b) \ b * x - a * y = gcd(a,b)" +proof- + let ?g = "gcd (a,b)" + from bezout[of a b] obtain d x y where d: "d dvd a" "d dvd b" "a * x - b * y = d \ b * x - a * y = d" by blast + from d(1,2) have "d dvd ?g" by simp + then obtain k where k: "?g = d*k" unfolding dvd_def by blast + from d(3) have "(a * x - b * y)*k = d*k \ (b * x - a * y)*k = d*k" by blast + hence "a * x * k - b * y*k = d*k \ b * x * k - a * y*k = d*k" + by (simp only: diff_mult_distrib) + hence "a * (x * k) - b * (y*k) = ?g \ b * (x * k) - a * (y*k) = ?g" + by (simp add: k mult_assoc) + thus ?thesis by blast +qed + +lemma bezout_gcd_strong: assumes a: "a \ 0" + shows "\x y. a * x = b * y + gcd(a,b)" +proof- + let ?g = "gcd (a,b)" + from bezout_add_strong[OF a, of b] + obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast + from d(1,2) have "d dvd ?g" by simp + then obtain k where k: "?g = d*k" unfolding dvd_def by blast + from d(3) have "a * x * k = (b * y + d) *k " by auto + hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k) + thus ?thesis by blast +qed + +lemma gcd_mult_distrib: "gcd(a * c, b * c) = c * gcd(a,b)" +by(simp add: gcd_mult_distrib2 mult_commute) + +lemma gcd_bezout: "(\x y. a * x - b * y = d \ b * x - a * y = d) \ gcd(a,b) dvd d" + (is "?lhs \ ?rhs") +proof- + let ?g = "gcd (a,b)" + {assume H: ?rhs then obtain k where k: "d = ?g*k" unfolding dvd_def by blast + from bezout_gcd[of a b] obtain x y where xy: "a * x - b * y = ?g \ b * x - a * y = ?g" + by blast + hence "(a * x - b * y)*k = ?g*k \ (b * x - a * y)*k = ?g*k" by auto + hence "a * x*k - b * y*k = ?g*k \ b * x * k - a * y*k = ?g*k" + by (simp only: diff_mult_distrib) + hence "a * (x*k) - b * (y*k) = d \ b * (x * k) - a * (y*k) = d" + by (simp add: k[symmetric] mult_assoc) + hence ?lhs by blast} + moreover + {fix x y assume H: "a * x - b * y = d \ b * x - a * y = d" + have dv: "?g dvd a*x" "?g dvd b * y" "?g dvd b*x" "?g dvd a * y" + using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all + from dvd_diff[OF dv(1,2)] dvd_diff[OF dv(3,4)] H + have ?rhs by auto} + ultimately show ?thesis by blast +qed + +lemma gcd_bezout_sum: assumes H:"a * x + b * y = d" shows "gcd(a,b) dvd d" +proof- + let ?g = "gcd (a,b)" + have dv: "?g dvd a*x" "?g dvd b * y" + using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all + from dvd_add[OF dv] H + show ?thesis by auto +qed + +lemma gcd_mult': "gcd(b,a * b) = b" +by (simp add: gcd_mult mult_commute[of a b]) + +lemma gcd_add: "gcd(a + b,b) = gcd(a,b)" "gcd(b + a,b) = gcd(a,b)" "gcd(a,a + b) = gcd(a,b)" "gcd(a,b + a) = gcd(a,b)" +apply (simp_all add: gcd_add1) +by (simp add: gcd_commute gcd_add1) + +lemma gcd_sub: "b <= a ==> gcd(a - b,b) = gcd(a,b)" "a <= b ==> gcd(a,b - a) = gcd(a,b)" +proof- + {fix a b assume H: "b \ (a::nat)" + hence th: "a - b + b = a" by arith + from gcd_add(1)[of "a - b" b] th have "gcd(a - b,b) = gcd(a,b)" by simp} + note th = this +{ + assume ab: "b \ a" + from th[OF ab] show "gcd (a - b, b) = gcd (a, b)" by blast +next + assume ab: "a \ b" + from th[OF ab] show "gcd (a,b - a) = gcd (a, b)" + by (simp add: gcd_commute)} +qed + +(* Coprimality *) + +lemma coprime: "coprime a b \ (\d. d dvd a \ d dvd b \ d = 1)" +using gcd_unique[of 1 a b, simplified] by (auto simp add: coprime_def) +lemma coprime_commute: "coprime a b \ coprime b a" by (simp add: coprime_def gcd_commute) + +lemma coprime_bezout: "coprime a b \ (\x y. a * x - b * y = 1 \ b * x - a * y = 1)" +using coprime_def gcd_bezout by auto + +lemma coprime_divprod: "d dvd a * b \ coprime d a \ d dvd b" + using relprime_dvd_mult_iff[of d a b] by (auto simp add: coprime_def mult_commute) + +lemma coprime_1[simp]: "coprime a 1" by (simp add: coprime_def) +lemma coprime_1'[simp]: "coprime 1 a" by (simp add: coprime_def) +lemma coprime_Suc0[simp]: "coprime a (Suc 0)" by (simp add: coprime_def) +lemma coprime_Suc0'[simp]: "coprime (Suc 0) a" by (simp add: coprime_def) + +lemma gcd_coprime: + assumes z: "gcd(a,b) \ 0" and a: "a = a' * gcd(a,b)" and b: "b = b' * gcd(a,b)" + shows "coprime a' b'" +proof- + let ?g = "gcd(a,b)" + {assume bz: "a = 0" from b bz z a have ?thesis by (simp add: gcd_zero coprime_def)} + moreover + {assume az: "a\ 0" + from z have z': "?g > 0" by simp + from bezout_gcd_strong[OF az, of b] + obtain x y where xy: "a*x = b*y + ?g" by blast + from xy a b have "?g * a'*x = ?g * (b'*y + 1)" by (simp add: ring_simps) + hence "?g * (a'*x) = ?g * (b'*y + 1)" by (simp add: mult_assoc) + hence "a'*x = (b'*y + 1)" + by (simp only: nat_mult_eq_cancel1[OF z']) + hence "a'*x - b'*y = 1" by simp + with coprime_bezout[of a' b'] have ?thesis by auto} + ultimately show ?thesis by blast +qed +lemma coprime_0: "coprime d 0 \ d = 1" by (simp add: coprime_def) +lemma coprime_mul: assumes da: "coprime d a" and db: "coprime d b" + shows "coprime d (a * b)" +proof- + from da have th: "gcd(a, d) = 1" by (simp add: coprime_def gcd_commute) + from gcd_mult_cancel[of a d b, OF th] db[unfolded coprime_def] have "gcd (d, a*b) = 1" + by (simp add: gcd_commute) + thus ?thesis unfolding coprime_def . +qed +lemma coprime_lmul2: assumes dab: "coprime d (a * b)" shows "coprime d b" +using prems unfolding coprime_bezout +apply clarsimp +apply (case_tac "d * x - a * b * y = Suc 0 ", simp_all) +apply (rule_tac x="x" in exI) +apply (rule_tac x="a*y" in exI) +apply (simp add: mult_ac) +apply (rule_tac x="a*x" in exI) +apply (rule_tac x="y" in exI) +apply (simp add: mult_ac) +done + +lemma coprime_rmul2: "coprime d (a * b) \ coprime d a" +unfolding coprime_bezout +apply clarsimp +apply (case_tac "d * x - a * b * y = Suc 0 ", simp_all) +apply (rule_tac x="x" in exI) +apply (rule_tac x="b*y" in exI) +apply (simp add: mult_ac) +apply (rule_tac x="b*x" in exI) +apply (rule_tac x="y" in exI) +apply (simp add: mult_ac) +done +lemma coprime_mul_eq: "coprime d (a * b) \ coprime d a \ coprime d b" + using coprime_rmul2[of d a b] coprime_lmul2[of d a b] coprime_mul[of d a b] + by blast + +lemma gcd_coprime_exists: + assumes nz: "gcd(a,b) \ 0" + shows "\a' b'. a = a' * gcd(a,b) \ b = b' * gcd(a,b) \ coprime a' b'" +proof- + let ?g = "gcd (a,b)" + from gcd_dvd1[of a b] gcd_dvd2[of a b] + obtain a' b' where "a = ?g*a'" "b = ?g*b'" unfolding dvd_def by blast + hence ab': "a = a'*?g" "b = b'*?g" by algebra+ + from ab' gcd_coprime[OF nz ab'] show ?thesis by blast +qed + +lemma coprime_exp: "coprime d a ==> coprime d (a^n)" + by(induct n, simp_all add: coprime_mul) + +lemma coprime_exp_imp: "coprime a b ==> coprime (a ^n) (b ^n)" + by (induct n, simp_all add: coprime_mul_eq coprime_commute coprime_exp) +lemma coprime_refl[simp]: "coprime n n \ n = 1" by (simp add: coprime_def) +lemma coprime_plus1[simp]: "coprime (n + 1) n" + apply (simp add: coprime_bezout) + apply (rule exI[where x=1]) + apply (rule exI[where x=1]) + apply simp + done +lemma coprime_minus1: "n \ 0 ==> coprime (n - 1) n" + using coprime_plus1[of "n - 1"] coprime_commute[of "n - 1" n] by auto + +lemma bezout_gcd_pow: "\x y. a ^n * x - b ^ n * y = gcd(a,b) ^ n \ b ^ n * x - a ^ n * y = gcd(a,b) ^ n" +proof- + let ?g = "gcd (a,b)" + {assume z: "?g = 0" hence ?thesis + apply (cases n, simp) + apply arith + apply (simp only: z power_0_Suc) + apply (rule exI[where x=0]) + apply (rule exI[where x=0]) + by simp} + moreover + {assume z: "?g \ 0" + from gcd_dvd1[of a b] gcd_dvd2[of a b] obtain a' b' where + ab': "a = a'*?g" "b = b'*?g" unfolding dvd_def by (auto simp add: mult_ac) + hence ab'': "?g*a' = a" "?g * b' = b" by algebra+ + from coprime_exp_imp[OF gcd_coprime[OF z ab'], unfolded coprime_bezout, of n] + obtain x y where "a'^n * x - b'^n * y = 1 \ b'^n * x - a'^n * y = 1" by blast + hence "?g^n * (a'^n * x - b'^n * y) = ?g^n \ ?g^n*(b'^n * x - a'^n * y) = ?g^n" + using z by auto + then have "a^n * x - b^n * y = ?g^n \ b^n * x - a^n * y = ?g^n" + using z ab'' by (simp only: power_mult_distrib[symmetric] + diff_mult_distrib2 mult_assoc[symmetric]) + hence ?thesis by blast } + ultimately show ?thesis by blast +qed +lemma gcd_exp: "gcd (a^n, b^n) = gcd(a,b)^n" +proof- + let ?g = "gcd(a^n,b^n)" + let ?gn = "gcd(a,b)^n" + {fix e assume H: "e dvd a^n" "e dvd b^n" + from bezout_gcd_pow[of a n b] obtain x y + where xy: "a ^ n * x - b ^ n * y = ?gn \ b ^ n * x - a ^ n * y = ?gn" by blast + from dvd_diff [OF dvd_mult2[OF H(1), of x] dvd_mult2[OF H(2), of y]] + dvd_diff [OF dvd_mult2[OF H(2), of x] dvd_mult2[OF H(1), of y]] xy + have "e dvd ?gn" by (cases "a ^ n * x - b ^ n * y = gcd (a, b) ^ n", simp_all)} + hence th: "\e. e dvd a^n \ e dvd b^n \ e dvd ?gn" by blast + from divides_exp[OF gcd_dvd1[of a b], of n] divides_exp[OF gcd_dvd2[of a b], of n] th + gcd_unique have "?gn = ?g" by blast thus ?thesis by simp +qed + +lemma coprime_exp2: "coprime (a ^ Suc n) (b^ Suc n) \ coprime a b" +by (simp only: coprime_def gcd_exp exp_eq_1) simp + +lemma division_decomp: assumes dc: "(a::nat) dvd b * c" + shows "\b' c'. a = b' * c' \ b' dvd b \ c' dvd c" +proof- + let ?g = "gcd (a,b)" + {assume "?g = 0" with dc have ?thesis apply (simp add: gcd_zero) + apply (rule exI[where x="0"]) + by (rule exI[where x="c"], simp)} + moreover + {assume z: "?g \ 0" + from gcd_coprime_exists[OF z] + obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" by blast + from gcd_dvd2[of a b] have thb: "?g dvd b" . + from ab'(1) have "a' dvd a" unfolding dvd_def by blast + with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp + from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto + hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc) + with z have th_1: "a' dvd b'*c" by simp + from coprime_divprod[OF th_1 ab'(3)] have thc: "a' dvd c" . + from ab' have "a = ?g*a'" by algebra + with thb thc have ?thesis by blast } + ultimately show ?thesis by blast +qed + +lemma nat_power_eq_0_iff: "(m::nat) ^ n = 0 \ n \ 0 \ m = 0" by (induct n, auto) + +lemma divides_rev: assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \ 0" shows "a dvd b" +proof- + let ?g = "gcd (a,b)" + from n obtain m where m: "n = Suc m" by (cases n, simp_all) + {assume "?g = 0" with ab n have ?thesis by (simp add: gcd_zero)} + moreover + {assume z: "?g \ 0" + hence zn: "?g ^ n \ 0" using n by (simp add: neq0_conv) + from gcd_coprime_exists[OF z] + obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" by blast + from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" by (simp add: ab'(1,2)[symmetric]) + hence "?g^n*a'^n dvd ?g^n *b'^n" by (simp only: power_mult_distrib mult_commute) + with zn z n have th0:"a'^n dvd b'^n" by (auto simp add: nat_power_eq_0_iff) + have "a' dvd a'^n" by (simp add: m) + with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp + hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute) + from coprime_divprod[OF th1 coprime_exp[OF ab'(3), of m]] + have "a' dvd b'" . + hence "a'*?g dvd b'*?g" by simp + with ab'(1,2) have ?thesis by simp } + ultimately show ?thesis by blast +qed + +lemma divides_mul: assumes mr: "m dvd r" and nr: "n dvd r" and mn:"coprime m n" + shows "m * n dvd r" +proof- + from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" + unfolding dvd_def by blast + from mr n' have "m dvd n'*n" by (simp add: mult_commute) + hence "m dvd n'" using relprime_dvd_mult_iff[OF mn[unfolded coprime_def]] by simp + then obtain k where k: "n' = m*k" unfolding dvd_def by blast + from n' k show ?thesis unfolding dvd_def by auto +qed + +(* A binary form of the Chinese Remainder Theorem. *) + +lemma chinese_remainder: assumes ab: "coprime a b" and a:"a \ 0" and b:"b \ 0" + shows "\x q1 q2. x = u + q1 * a \ x = v + q2 * b" +proof- + from bezout_add_strong[OF a, of b] bezout_add_strong[OF b, of a] + obtain d1 x1 y1 d2 x2 y2 where dxy1: "d1 dvd a" "d1 dvd b" "a * x1 = b * y1 + d1" + and dxy2: "d2 dvd b" "d2 dvd a" "b * x2 = a * y2 + d2" by blast + from gcd_unique[of 1 a b, simplified ab[unfolded coprime_def], simplified] + dxy1(1,2) dxy2(1,2) have d12: "d1 = 1" "d2 =1" by auto + let ?x = "v * a * x1 + u * b * x2" + let ?q1 = "v * x1 + u * y2" + let ?q2 = "v * y1 + u * x2" + from dxy2(3)[simplified d12] dxy1(3)[simplified d12] + have "?x = u + ?q1 * a" "?x = v + ?q2 * b" by algebra+ + thus ?thesis by blast +qed + +(* Primality *) +(* A few useful theorems about primes *) + +lemma prime_0[simp]: "~prime 0" by (simp add: prime_def) +lemma prime_1[simp]: "~ prime 1" by (simp add: prime_def) +lemma prime_Suc0[simp]: "~ prime (Suc 0)" by (simp add: prime_def) + +lemma prime_ge_2: "prime p ==> p \ 2" by (simp add: prime_def) +lemma prime_factor: assumes n: "n \ 1" shows "\ p. prime p \ p dvd n" +using n +proof(induct n rule: nat_less_induct) + fix n + assume H: "\m 1 \ (\p. prime p \ p dvd m)" "n \ 1" + let ?ths = "\p. prime p \ p dvd n" + {assume "n=0" hence ?ths using two_is_prime by auto} + moreover + {assume nz: "n\0" + {assume "prime n" hence ?ths by - (rule exI[where x="n"], simp)} + moreover + {assume n: "\ prime n" + with nz H(2) + obtain k where k:"k dvd n" "k \ 1" "k \ n" by (auto simp add: prime_def) + from dvd_imp_le[OF k(1)] nz k(3) have kn: "k < n" by simp + from H(1)[rule_format, OF kn k(2)] obtain p where p: "prime p" "p dvd k" by blast + from dvd_trans[OF p(2) k(1)] p(1) have ?ths by blast} + ultimately have ?ths by blast} + ultimately show ?ths by blast +qed + +lemma prime_factor_lt: assumes p: "prime p" and n: "n \ 0" and npm:"n = p * m" + shows "m < n" +proof- + {assume "m=0" with n have ?thesis by simp} + moreover + {assume m: "m \ 0" + from npm have mn: "m dvd n" unfolding dvd_def by auto + from npm m have "n \ m" using p by auto + with dvd_imp_le[OF mn] n have ?thesis by simp} + ultimately show ?thesis by blast +qed + +lemma euclid_bound: "\p. prime p \ n < p \ p <= Suc (fact n)" +proof- + have f1: "fact n + 1 \ 1" using fact_le[of n] by arith + from prime_factor[OF f1] obtain p where p: "prime p" "p dvd fact n + 1" by blast + from dvd_imp_le[OF p(2)] have pfn: "p \ fact n + 1" by simp + {assume np: "p \ n" + from p(1) have p1: "p \ 1" by (cases p, simp_all) + from divides_fact[OF p1 np] have pfn': "p dvd fact n" . + from divides_add_revr[OF pfn' p(2)] p(1) have False by simp} + hence "n < p" by arith + with p(1) pfn show ?thesis by auto +qed + +lemma euclid: "\p. prime p \ p > n" using euclid_bound by auto +lemma primes_infinite: "\ (finite {p. prime p})" +proof (auto simp add: finite_conv_nat_seg_image) + fix n f + assume H: "Collect prime = f ` {i. i < (n::nat)}" + let ?P = "Collect prime" + let ?m = "Max ?P" + have P0: "?P \ {}" using two_is_prime by auto + from H have fP: "finite ?P" using finite_conv_nat_seg_image by blast + from Max_in[OF fP P0] have "?m \ ?P" . + from Max_ge[OF fP P0] have contr: "\ p. prime p \ p \ ?m" by blast + from euclid[of ?m] obtain q where q: "prime q" "q > ?m" by blast + with contr show False by auto +qed + +lemma coprime_prime: assumes ab: "coprime a b" + shows "~(prime p \ p dvd a \ p dvd b)" +proof + assume "prime p \ p dvd a \ p dvd b" + thus False using ab gcd_greatest[of p a b] by (simp add: coprime_def) +qed +lemma coprime_prime_eq: "coprime a b \ (\p. ~(prime p \ p dvd a \ p dvd b))" + (is "?lhs = ?rhs") +proof- + {assume "?lhs" with coprime_prime have ?rhs by blast} + moreover + {assume r: "?rhs" and c: "\ ?lhs" + then obtain g where g: "g\1" "g dvd a" "g dvd b" unfolding coprime_def by blast + from prime_factor[OF g(1)] obtain p where p: "prime p" "p dvd g" by blast + from dvd_trans [OF p(2) g(2)] dvd_trans [OF p(2) g(3)] + have "p dvd a" "p dvd b" . with p(1) r have False by blast} + ultimately show ?thesis by blast +qed + +lemma prime_coprime: assumes p: "prime p" + shows "n = 1 \ p dvd n \ coprime p n" +using p prime_imp_relprime[of p n] by (auto simp add: coprime_def) + +lemma prime_coprime_strong: "prime p \ p dvd n \ coprime p n" + using prime_coprime[of p n] by auto + +declare coprime_0[simp] + +lemma coprime_0'[simp]: "coprime 0 d \ d = 1" by (simp add: coprime_commute[of 0 d]) +lemma coprime_bezout_strong: assumes ab: "coprime a b" and b: "b \ 1" + shows "\x y. a * x = b * y + 1" +proof- + from ab b have az: "a \ 0" by - (rule ccontr, auto) + from bezout_gcd_strong[OF az, of b] ab[unfolded coprime_def] + show ?thesis by auto +qed + +lemma bezout_prime: assumes p: "prime p" and pa: "\ p dvd a" + shows "\x y. a*x = p*y + 1" +proof- + from p have p1: "p \ 1" using prime_1 by blast + from prime_coprime[OF p, of a] p1 pa have ap: "coprime a p" + by (auto simp add: coprime_commute) + from coprime_bezout_strong[OF ap p1] show ?thesis . +qed +lemma prime_divprod: assumes p: "prime p" and pab: "p dvd a*b" + shows "p dvd a \ p dvd b" +proof- + {assume "a=1" hence ?thesis using pab by simp } + moreover + {assume "p dvd a" hence ?thesis by blast} + moreover + {assume pa: "coprime p a" from coprime_divprod[OF pab pa] have ?thesis .. } + ultimately show ?thesis using prime_coprime[OF p, of a] by blast +qed + +lemma prime_divprod_eq: assumes p: "prime p" + shows "p dvd a*b \ p dvd a \ p dvd b" +using p prime_divprod dvd_mult dvd_mult2 by auto + +lemma prime_divexp: assumes p:"prime p" and px: "p dvd x^n" + shows "p dvd x" +using px +proof(induct n) + case 0 thus ?case by simp +next + case (Suc n) + hence th: "p dvd x*x^n" by simp + {assume H: "p dvd x^n" + from Suc.hyps[OF H] have ?case .} + with prime_divprod[OF p th] show ?case by blast +qed + +lemma prime_divexp_n: "prime p \ p dvd x^n \ p^n dvd x^n" + using prime_divexp[of p x n] divides_exp[of p x n] by blast + +lemma coprime_prime_dvd_ex: assumes xy: "\coprime x y" + shows "\p. prime p \ p dvd x \ p dvd y" +proof- + from xy[unfolded coprime_def] obtain g where g: "g \ 1" "g dvd x" "g dvd y" + by blast + from prime_factor[OF g(1)] obtain p where p: "prime p" "p dvd g" by blast + from g(2,3) dvd_trans[OF p(2)] p(1) show ?thesis by auto +qed +lemma coprime_sos: assumes xy: "coprime x y" + shows "coprime (x * y) (x^2 + y^2)" +proof- + {assume c: "\ coprime (x * y) (x^2 + y^2)" + from coprime_prime_dvd_ex[OF c] obtain p + where p: "prime p" "p dvd x*y" "p dvd x^2 + y^2" by blast + {assume px: "p dvd x" + from dvd_mult[OF px, of x] p(3) have "p dvd y^2" + unfolding dvd_def + apply (auto simp add: power2_eq_square) + apply (rule_tac x= "ka - k" in exI) + by (simp add: diff_mult_distrib2) + with prime_divexp[OF p(1), of y 2] have py: "p dvd y" . + from p(1) px py xy[unfolded coprime, rule_format, of p] prime_1 + have False by simp } + moreover + {assume py: "p dvd y" + from dvd_mult[OF py, of y] p(3) have "p dvd x^2" + unfolding dvd_def + apply (auto simp add: power2_eq_square) + apply (rule_tac x= "ka - k" in exI) + by (simp add: diff_mult_distrib2) + with prime_divexp[OF p(1), of x 2] have px: "p dvd x" . + from p(1) px py xy[unfolded coprime, rule_format, of p] prime_1 + have False by simp } + ultimately have False using prime_divprod[OF p(1,2)] by blast} + thus ?thesis by blast +qed + +lemma distinct_prime_coprime: "prime p \ prime q \ p \ q \ coprime p q" + unfolding prime_def coprime_prime_eq by blast + +lemma prime_coprime_lt: assumes p: "prime p" and x: "0 < x" and xp: "x < p" + shows "coprime x p" +proof- + {assume c: "\ coprime x p" + then obtain g where g: "g \ 1" "g dvd x" "g dvd p" unfolding coprime_def by blast + from dvd_imp_le[OF g(2)] x xp have gp: "g < p" by arith + from g(2) x have "g \ 0" by - (rule ccontr, simp) + with g gp p[unfolded prime_def] have False by blast} +thus ?thesis by blast +qed + +lemma even_dvd[simp]: "even (n::nat) \ 2 dvd n" by presburger +lemma prime_odd: "prime p \ p = 2 \ odd p" unfolding prime_def by auto + +(* One property of coprimality is easier to prove via prime factors. *) + +lemma prime_divprod_pow: + assumes p: "prime p" and ab: "coprime a b" and pab: "p^n dvd a * b" + shows "p^n dvd a \ p^n dvd b" +proof- + {assume "n = 0 \ a = 1 \ b = 1" with pab have ?thesis + apply (cases "n=0", simp_all) + apply (cases "a=1", simp_all) done} + moreover + {assume n: "n \ 0" and a: "a\1" and b: "b\1" + then obtain m where m: "n = Suc m" by (cases n, auto) + from divides_exp2[OF n pab] have pab': "p dvd a*b" . + from prime_divprod[OF p pab'] + have "p dvd a \ p dvd b" . + moreover + {assume pa: "p dvd a" + have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute) + from coprime_prime[OF ab, of p] p pa have "\ p dvd b" by blast + with prime_coprime[OF p, of b] b + have cpb: "coprime b p" using coprime_commute by blast + from coprime_exp[OF cpb] have pnb: "coprime (p^n) b" + by (simp add: coprime_commute) + from coprime_divprod[OF pnba pnb] have ?thesis by blast } + moreover + {assume pb: "p dvd b" + have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute) + from coprime_prime[OF ab, of p] p pb have "\ p dvd a" by blast + with prime_coprime[OF p, of a] a + have cpb: "coprime a p" using coprime_commute by blast + from coprime_exp[OF cpb] have pnb: "coprime (p^n) a" + by (simp add: coprime_commute) + from coprime_divprod[OF pab pnb] have ?thesis by blast } + ultimately have ?thesis by blast} + ultimately show ?thesis by blast +qed + +lemma nat_mult_eq_one: "(n::nat) * m = 1 \ n = 1 \ m = 1" (is "?lhs \ ?rhs") +proof + assume H: "?lhs" + hence "n dvd 1" "m dvd 1" unfolding dvd_def by (auto simp add: mult_commute) + thus ?rhs by auto +next + assume ?rhs then show ?lhs by auto +qed + +lemma power_Suc0[simp]: "Suc 0 ^ n = Suc 0" + unfolding One_nat_def[symmetric] power_one .. +lemma coprime_pow: assumes ab: "coprime a b" and abcn: "a * b = c ^n" + shows "\r s. a = r^n \ b = s ^n" + using ab abcn +proof(induct c arbitrary: a b rule: nat_less_induct) + fix c a b + assume H: "\ma b. coprime a b \ a * b = m ^ n \ (\r s. a = r ^ n \ b = s ^ n)" "coprime a b" "a * b = c ^ n" + let ?ths = "\r s. a = r^n \ b = s ^n" + {assume n: "n = 0" + with H(3) power_one have "a*b = 1" by simp + hence "a = 1 \ b = 1" by simp + hence ?ths + apply - + apply (rule exI[where x=1]) + apply (rule exI[where x=1]) + using power_one[of n] + by simp} + moreover + {assume n: "n \ 0" then obtain m where m: "n = Suc m" by (cases n, auto) + {assume c: "c = 0" + with H(3) m H(2) have ?ths apply simp + apply (cases "a=0", simp_all) + apply (rule exI[where x="0"], simp) + apply (rule exI[where x="0"], simp) + done} + moreover + {assume "c=1" with H(3) power_one have "a*b = 1" by simp + hence "a = 1 \ b = 1" by simp + hence ?ths + apply - + apply (rule exI[where x=1]) + apply (rule exI[where x=1]) + using power_one[of n] + by simp} + moreover + {assume c: "c\1" "c \ 0" + from prime_factor[OF c(1)] obtain p where p: "prime p" "p dvd c" by blast + from prime_divprod_pow[OF p(1) H(2), unfolded H(3), OF divides_exp[OF p(2), of n]] + have pnab: "p ^ n dvd a \ p^n dvd b" . + from p(2) obtain l where l: "c = p*l" unfolding dvd_def by blast + have pn0: "p^n \ 0" using n prime_ge_2 [OF p(1)] by (simp add: neq0_conv) + {assume pa: "p^n dvd a" + then obtain k where k: "a = p^n * k" unfolding dvd_def by blast + from l have "l dvd c" by auto + with dvd_imp_le[of l c] c have "l \ c" by auto + moreover {assume "l = c" with l c have "p = 1" by simp with p have False by simp} + ultimately have lc: "l < c" by arith + from coprime_lmul2 [OF H(2)[unfolded k coprime_commute[of "p^n*k" b]]] + have kb: "coprime k b" by (simp add: coprime_commute) + from H(3) l k pn0 have kbln: "k * b = l ^ n" + by (auto simp add: power_mult_distrib) + from H(1)[rule_format, OF lc kb kbln] + obtain r s where rs: "k = r ^n" "b = s^n" by blast + from k rs(1) have "a = (p*r)^n" by (simp add: power_mult_distrib) + with rs(2) have ?ths by blast } + moreover + {assume pb: "p^n dvd b" + then obtain k where k: "b = p^n * k" unfolding dvd_def by blast + from l have "l dvd c" by auto + with dvd_imp_le[of l c] c have "l \ c" by auto + moreover {assume "l = c" with l c have "p = 1" by simp with p have False by simp} + ultimately have lc: "l < c" by arith + from coprime_lmul2 [OF H(2)[unfolded k coprime_commute[of "p^n*k" a]]] + have kb: "coprime k a" by (simp add: coprime_commute) + from H(3) l k pn0 n have kbln: "k * a = l ^ n" + by (simp add: power_mult_distrib mult_commute) + from H(1)[rule_format, OF lc kb kbln] + obtain r s where rs: "k = r ^n" "a = s^n" by blast + from k rs(1) have "b = (p*r)^n" by (simp add: power_mult_distrib) + with rs(2) have ?ths by blast } + ultimately have ?ths using pnab by blast} + ultimately have ?ths by blast} +ultimately show ?ths by blast +qed + +(* More useful lemmas. *) +lemma prime_product: + "prime (p*q) \ p = 1 \ q = 1" unfolding prime_def by auto + +lemma prime_exp: "prime (p^n) \ prime p \ n = 1" +proof(induct n) + case 0 thus ?case by simp +next + case (Suc n) + {assume "p = 0" hence ?case by simp} + moreover + {assume "p=1" hence ?case by simp} + moreover + {assume p: "p \ 0" "p\1" + {assume pp: "prime (p^Suc n)" + hence "p = 1 \ p^n = 1" using prime_product[of p "p^n"] by simp + with p have n: "n = 0" + by (simp only: exp_eq_1 ) simp + with pp have "prime p \ Suc n = 1" by simp} + moreover + {assume n: "prime p \ Suc n = 1" hence "prime (p^Suc n)" by simp} + ultimately have ?case by blast} + ultimately show ?case by blast +qed + +lemma prime_power_mult: + assumes p: "prime p" and xy: "x * y = p ^ k" + shows "\i j. x = p ^i \ y = p^ j" + using xy +proof(induct k arbitrary: x y) + case 0 thus ?case apply simp by (rule exI[where x="0"], simp) +next + case (Suc k x y) + from Suc.prems have pxy: "p dvd x*y" by auto + from prime_divprod[OF p pxy] have pxyc: "p dvd x \ p dvd y" . + from p have p0: "p \ 0" by - (rule ccontr, simp) + {assume px: "p dvd x" + then obtain d where d: "x = p*d" unfolding dvd_def by blast + from Suc.prems d have "p*d*y = p^Suc k" by simp + hence th: "d*y = p^k" using p0 by simp + from Suc.hyps[OF th] obtain i j where ij: "d = p^i" "y = p^j" by blast + with d have "x = p^Suc i" by simp + with ij(2) have ?case by blast} + moreover + {assume px: "p dvd y" + then obtain d where d: "y = p*d" unfolding dvd_def by blast + from Suc.prems d have "p*d*x = p^Suc k" by (simp add: mult_commute) + hence th: "d*x = p^k" using p0 by simp + from Suc.hyps[OF th] obtain i j where ij: "d = p^i" "x = p^j" by blast + with d have "y = p^Suc i" by simp + with ij(2) have ?case by blast} + ultimately show ?case using pxyc by blast +qed + +lemma prime_power_exp: assumes p: "prime p" and n:"n \ 0" + and xn: "x^n = p^k" shows "\i. x = p^i" + using n xn +proof(induct n arbitrary: k) + case 0 thus ?case by simp +next + case (Suc n k) hence th: "x*x^n = p^k" by simp + {assume "n = 0" with prems have ?case apply simp + by (rule exI[where x="k"],simp)} + moreover + {assume n: "n \ 0" + from prime_power_mult[OF p th] + obtain i j where ij: "x = p^i" "x^n = p^j"by blast + from Suc.hyps[OF n ij(2)] have ?case .} + ultimately show ?case by blast +qed + +lemma divides_primepow: assumes p: "prime p" + shows "d dvd p^k \ (\ i. i \ k \ d = p ^i)" +proof + assume H: "d dvd p^k" then obtain e where e: "d*e = p^k" + unfolding dvd_def apply (auto simp add: mult_commute) by blast + from prime_power_mult[OF p e] obtain i j where ij: "d = p^i" "e=p^j" by blast + from prime_ge_2[OF p] have p1: "p > 1" by arith + from e ij have "p^(i + j) = p^k" by (simp add: power_add) + hence "i + j = k" using power_inject_exp[of p "i+j" k, OF p1] by simp + hence "i \ k" by arith + with ij(1) show "\i\k. d = p ^ i" by blast +next + {fix i assume H: "i \ k" "d = p^i" + hence "\j. k = i + j" by arith + then obtain j where j: "k = i + j" by blast + hence "p^k = p^j*d" using H(2) by (simp add: power_add) + hence "d dvd p^k" unfolding dvd_def by auto} + thus "\i\k. d = p ^ i \ d dvd p ^ k" by blast +qed + +lemma coprime_divisors: "d dvd a \ e dvd b \ coprime a b \ coprime d e" + by (auto simp add: dvd_def coprime) + end