diff -r a1421c88ae0a -r 34cd1d210b92 src/HOL/Library/Code_Abstract_Char.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/Code_Abstract_Char.thy Mon Jul 04 07:57:22 2022 +0000 @@ -0,0 +1,186 @@ +(* Title: HOL/Library/Code_Abstract_Char.thy + Author: Florian Haftmann, TU Muenchen + Author: René Thiemann, UIBK +*) + +theory Code_Abstract_Char + imports + Main + "HOL-Library.Char_ord" +begin + +definition Chr :: \integer \ char\ + where [simp]: \Chr = char_of\ + +lemma char_of_integer_of_char [code abstype]: + \Chr (integer_of_char c) = c\ + by (simp add: integer_of_char_def) + +lemma char_of_integer_code [code]: + \integer_of_char (char_of_integer k) = take_bit 8 k\ + by (simp add: integer_of_char_def char_of_integer_def take_bit_eq_mod) + +context comm_semiring_1 +begin + +definition byte :: \bool \ bool \ bool \ bool \ bool \ bool \ bool \ bool \ 'a\ + where [simp]: \byte b0 b1 b2 b3 b4 b5 b6 b7 = horner_sum of_bool 2 [b0, b1, b2, b3, b4, b5, b6, b7]\ + +lemma byte_code [code]: + \byte b0 b1 b2 b3 b4 b5 b6 b7 = ( + let + s0 = if b0 then 1 else 0; + s1 = if b1 then s0 + 2 else s0; + s2 = if b2 then s1 + 4 else s1; + s3 = if b3 then s2 + 8 else s2; + s4 = if b4 then s3 + 16 else s3; + s5 = if b5 then s4 + 32 else s4; + s6 = if b6 then s5 + 64 else s5; + s7 = if b7 then s6 + 128 else s6 + in s7)\ + by simp + +end + +lemma Char_code [code]: + \integer_of_char (Char b0 b1 b2 b3 b4 b5 b6 b7) = byte b0 b1 b2 b3 b4 b5 b6 b7\ + by (simp add: integer_of_char_def) + +lemma digit_0_code [code]: + \digit0 c \ bit (integer_of_char c) 0\ + by (cases c) (simp add: integer_of_char_def) + +lemma digit_1_code [code]: + \digit1 c \ bit (integer_of_char c) 1\ + by (cases c) (simp add: integer_of_char_def) + +lemma digit_2_code [code]: + \digit2 c \ bit (integer_of_char c) 2\ + by (cases c) (simp add: integer_of_char_def) + +lemma digit_3_code [code]: + \digit3 c \ bit (integer_of_char c) 3\ + by (cases c) (simp add: integer_of_char_def) + +lemma digit_4_code [code]: + \digit4 c \ bit (integer_of_char c) 4\ + by (cases c) (simp add: integer_of_char_def) + +lemma digit_5_code [code]: + \digit5 c \ bit (integer_of_char c) 5\ + by (cases c) (simp add: integer_of_char_def) + +lemma digit_6_code [code]: + \digit6 c \ bit (integer_of_char c) 6\ + by (cases c) (simp add: integer_of_char_def) + +lemma digit_7_code [code]: + \digit7 c \ bit (integer_of_char c) 7\ + by (cases c) (simp add: integer_of_char_def) + +lemma case_char_code [code]: + \case_char f c = f (digit0 c) (digit1 c) (digit2 c) (digit3 c) (digit4 c) (digit5 c) (digit6 c) (digit7 c)\ + by (fact char.case_eq_if) + +lemma rec_char_code [code]: + \rec_char f c = f (digit0 c) (digit1 c) (digit2 c) (digit3 c) (digit4 c) (digit5 c) (digit6 c) (digit7 c)\ + by (cases c) simp + +lemma char_of_code [code]: + \integer_of_char (char_of a) = + byte (bit a 0) (bit a 1) (bit a 2) (bit a 3) (bit a 4) (bit a 5) (bit a 6) (bit a 7)\ + by (simp add: char_of_def integer_of_char_def) + +lemma ascii_of_code [code]: + \integer_of_char (String.ascii_of c) = (let k = integer_of_char c in if k < 128 then k else k - 128)\ +proof (cases \of_char c < (128 :: integer)\) + case True + moreover have \(of_nat 0 :: integer) \ of_nat (of_char c)\ + by simp + then have \(0 :: integer) \ of_char c\ + by (simp only: of_nat_0 of_nat_of_char) + ultimately show ?thesis + by (simp add: Let_def integer_of_char_def take_bit_eq_mod unique_euclidean_semiring_numeral_class.mod_less) +next + case False + then have \(128 :: integer) \ of_char c\ + by simp + moreover have \of_nat (of_char c) < (of_nat 256 :: integer)\ + by (simp only: of_nat_less_iff) simp + then have \of_char c < (256 :: integer)\ + by (simp add: of_nat_of_char) + moreover define k :: integer where \k = of_char c - 128\ + then have \of_char c = k + 128\ + by simp + ultimately show ?thesis + by (simp add: Let_def integer_of_char_def take_bit_eq_mod unique_euclidean_semiring_numeral_class.mod_less) +qed + +lemma equal_char_code [code]: + \HOL.equal c d \ integer_of_char c = integer_of_char d\ + by (simp add: integer_of_char_def equal) + +lemma less_eq_char_code [code]: + \c \ d \ integer_of_char c \ integer_of_char d\ (is \?P \ ?Q\) +proof - + have \?P \ of_nat (of_char c) \ (of_nat (of_char d) :: integer)\ + by (simp add: less_eq_char_def) + also have \\ \ ?Q\ + by (simp add: of_nat_of_char integer_of_char_def) + finally show ?thesis . +qed + +lemma less_char_code [code]: + \c < d \ integer_of_char c < integer_of_char d\ (is \?P \ ?Q\) +proof - + have \?P \ of_nat (of_char c) < (of_nat (of_char d) :: integer)\ + by (simp add: less_char_def) + also have \\ \ ?Q\ + by (simp add: of_nat_of_char integer_of_char_def) + finally show ?thesis . +qed + +lemma absdef_simps: + \horner_sum of_bool 2 [] = (0 :: integer)\ + \horner_sum of_bool 2 (False # bs) = (0 :: integer) \ horner_sum of_bool 2 bs = (0 :: integer)\ + \horner_sum of_bool 2 (True # bs) = (1 :: integer) \ horner_sum of_bool 2 bs = (0 :: integer)\ + \horner_sum of_bool 2 (False # bs) = (numeral (Num.Bit0 n) :: integer) \ horner_sum of_bool 2 bs = (numeral n :: integer)\ + \horner_sum of_bool 2 (True # bs) = (numeral (Num.Bit1 n) :: integer) \ horner_sum of_bool 2 bs = (numeral n :: integer)\ + by auto (auto simp only: numeral_Bit0 [of n] numeral_Bit1 [of n] mult_2 [symmetric] add.commute [of _ 1] add.left_cancel mult_cancel_left) + +local_setup \ + let + val simps = @{thms absdef_simps integer_of_char_def of_char_Char numeral_One} + fun prove_eqn lthy n lhs def_eqn = + let + val eqn = (HOLogic.mk_Trueprop o HOLogic.mk_eq) + (\<^term>\integer_of_char\ $ lhs, HOLogic.mk_number \<^typ>\integer\ n) + in + Goal.prove_future lthy [] [] eqn (fn {context = ctxt, ...} => + unfold_tac ctxt (def_eqn :: simps)) + end + fun define n = + let + val s = "Char_" ^ String_Syntax.hex n; + val b = Binding.name s; + val b_def = Thm.def_binding b; + val b_code = Binding.name (s ^ "_code"); + in + Local_Theory.define ((b, Mixfix.NoSyn), + ((Binding.empty, []), HOLogic.mk_char n)) + #-> (fn (lhs, (_, raw_def_eqn)) => + Local_Theory.note ((b_def, @{attributes [code_abbrev]}), [HOLogic.mk_obj_eq raw_def_eqn]) + #-> (fn (_, [def_eqn]) => `(fn lthy => prove_eqn lthy n lhs def_eqn)) + #-> (fn raw_code_eqn => Local_Theory.note ((b_code, []), [raw_code_eqn])) + #-> (fn (_, [code_eqn]) => Code.declare_abstract_eqn code_eqn)) + end + in + fold define (0 upto 255) + end +\ + +code_identifier + code_module Code_Abstract_Char \ + (SML) Str and (OCaml) Str and (Haskell) Str and (Scala) Str + +end