diff -r 4dc65845eab3 -r d8d7d1b785af doc-src/TutorialI/Overview/LNCS/Ordinal.thy --- a/doc-src/TutorialI/Overview/LNCS/Ordinal.thy Wed Feb 24 11:55:52 2010 +0100 +++ b/doc-src/TutorialI/Overview/LNCS/Ordinal.thy Mon Mar 01 13:40:23 2010 +0100 @@ -9,8 +9,7 @@ "pred (Succ a) n = Some a" "pred (Limit f) n = Some (f n)" -constdefs - OpLim :: "(nat \ (ordinal \ ordinal)) \ (ordinal \ ordinal)" +definition OpLim :: "(nat \ (ordinal \ ordinal)) \ (ordinal \ ordinal)" where "OpLim F a \ Limit (\n. F n a)" OpItw :: "(ordinal \ ordinal) \ (ordinal \ ordinal)" ("\") "\f \ OpLim (power f)" @@ -29,8 +28,7 @@ "\f (Succ a) = f (Succ (\f a))" "\f (Limit h) = Limit (\n. \f (h n))" -constdefs - deriv :: "(ordinal \ ordinal) \ (ordinal \ ordinal)" +definition deriv :: "(ordinal \ ordinal) \ (ordinal \ ordinal)" where "deriv f \ \(\f)" consts @@ -40,8 +38,7 @@ "veblen (Succ a) = \(OpLim (power (veblen a)))" "veblen (Limit f) = \(OpLim (\n. veblen (f n)))" -constdefs - veb :: "ordinal \ ordinal" +definition veb :: "ordinal \ ordinal" where "veb a \ veblen a Zero" epsilon0 :: ordinal ("\\<^sub>0") "\\<^sub>0 \ veb Zero"