diff -r cdc1e59aa513 -r 354808e9f44b src/HOL/Analysis/Gamma_Function.thy --- a/src/HOL/Analysis/Gamma_Function.thy Mon Sep 26 07:56:54 2016 +0200 +++ b/src/HOL/Analysis/Gamma_Function.thy Wed Sep 28 17:01:01 2016 +0100 @@ -1812,13 +1812,13 @@ shows "G x = Gamma x" proof (rule antisym) show "G x \ Gamma x" - proof (rule tendsto_ge_const) + proof (rule tendsto_upperbound) from G_lower[of x] show "eventually (\n. Gamma_series x n \ G x) sequentially" using eventually_ge_at_top[of "1::nat"] x by (auto elim!: eventually_mono) qed (simp_all add: Gamma_series_LIMSEQ) next show "G x \ Gamma x" - proof (rule tendsto_le_const) + proof (rule tendsto_lowerbound) have "(\n. Gamma_series x n * (1 + x / real n)) \ Gamma x * (1 + 0)" by (rule tendsto_intros real_tendsto_divide_at_top Gamma_series_LIMSEQ filterlim_real_sequentially)+