diff -r 6ceb8d38bc9e -r 35fcab3da1b7 src/HOL/Lambda/Lambda.thy --- a/src/HOL/Lambda/Lambda.thy Tue Sep 07 11:51:53 2010 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,190 +0,0 @@ -(* Title: HOL/Lambda/Lambda.thy - Author: Tobias Nipkow - Copyright 1995 TU Muenchen -*) - -header {* Basic definitions of Lambda-calculus *} - -theory Lambda imports Main begin - -declare [[syntax_ambiguity_level = 100]] - - -subsection {* Lambda-terms in de Bruijn notation and substitution *} - -datatype dB = - Var nat - | App dB dB (infixl "\" 200) - | Abs dB - -primrec - lift :: "[dB, nat] => dB" -where - "lift (Var i) k = (if i < k then Var i else Var (i + 1))" - | "lift (s \ t) k = lift s k \ lift t k" - | "lift (Abs s) k = Abs (lift s (k + 1))" - -primrec - subst :: "[dB, dB, nat] => dB" ("_[_'/_]" [300, 0, 0] 300) -where (* FIXME base names *) - subst_Var: "(Var i)[s/k] = - (if k < i then Var (i - 1) else if i = k then s else Var i)" - | subst_App: "(t \ u)[s/k] = t[s/k] \ u[s/k]" - | subst_Abs: "(Abs t)[s/k] = Abs (t[lift s 0 / k+1])" - -declare subst_Var [simp del] - -text {* Optimized versions of @{term subst} and @{term lift}. *} - -primrec - liftn :: "[nat, dB, nat] => dB" -where - "liftn n (Var i) k = (if i < k then Var i else Var (i + n))" - | "liftn n (s \ t) k = liftn n s k \ liftn n t k" - | "liftn n (Abs s) k = Abs (liftn n s (k + 1))" - -primrec - substn :: "[dB, dB, nat] => dB" -where - "substn (Var i) s k = - (if k < i then Var (i - 1) else if i = k then liftn k s 0 else Var i)" - | "substn (t \ u) s k = substn t s k \ substn u s k" - | "substn (Abs t) s k = Abs (substn t s (k + 1))" - - -subsection {* Beta-reduction *} - -inductive beta :: "[dB, dB] => bool" (infixl "\\<^sub>\" 50) - where - beta [simp, intro!]: "Abs s \ t \\<^sub>\ s[t/0]" - | appL [simp, intro!]: "s \\<^sub>\ t ==> s \ u \\<^sub>\ t \ u" - | appR [simp, intro!]: "s \\<^sub>\ t ==> u \ s \\<^sub>\ u \ t" - | abs [simp, intro!]: "s \\<^sub>\ t ==> Abs s \\<^sub>\ Abs t" - -abbreviation - beta_reds :: "[dB, dB] => bool" (infixl "->>" 50) where - "s ->> t == beta^** s t" - -notation (latex) - beta_reds (infixl "\\<^sub>\\<^sup>*" 50) - -inductive_cases beta_cases [elim!]: - "Var i \\<^sub>\ t" - "Abs r \\<^sub>\ s" - "s \ t \\<^sub>\ u" - -declare if_not_P [simp] not_less_eq [simp] - -- {* don't add @{text "r_into_rtrancl[intro!]"} *} - - -subsection {* Congruence rules *} - -lemma rtrancl_beta_Abs [intro!]: - "s \\<^sub>\\<^sup>* s' ==> Abs s \\<^sub>\\<^sup>* Abs s'" - by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+ - -lemma rtrancl_beta_AppL: - "s \\<^sub>\\<^sup>* s' ==> s \ t \\<^sub>\\<^sup>* s' \ t" - by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+ - -lemma rtrancl_beta_AppR: - "t \\<^sub>\\<^sup>* t' ==> s \ t \\<^sub>\\<^sup>* s \ t'" - by (induct set: rtranclp) (blast intro: rtranclp.rtrancl_into_rtrancl)+ - -lemma rtrancl_beta_App [intro]: - "[| s \\<^sub>\\<^sup>* s'; t \\<^sub>\\<^sup>* t' |] ==> s \ t \\<^sub>\\<^sup>* s' \ t'" - by (blast intro!: rtrancl_beta_AppL rtrancl_beta_AppR intro: rtranclp_trans) - - -subsection {* Substitution-lemmas *} - -lemma subst_eq [simp]: "(Var k)[u/k] = u" - by (simp add: subst_Var) - -lemma subst_gt [simp]: "i < j ==> (Var j)[u/i] = Var (j - 1)" - by (simp add: subst_Var) - -lemma subst_lt [simp]: "j < i ==> (Var j)[u/i] = Var j" - by (simp add: subst_Var) - -lemma lift_lift: - "i < k + 1 \ lift (lift t i) (Suc k) = lift (lift t k) i" - by (induct t arbitrary: i k) auto - -lemma lift_subst [simp]: - "j < i + 1 \ lift (t[s/j]) i = (lift t (i + 1)) [lift s i / j]" - by (induct t arbitrary: i j s) - (simp_all add: diff_Suc subst_Var lift_lift split: nat.split) - -lemma lift_subst_lt: - "i < j + 1 \ lift (t[s/j]) i = (lift t i) [lift s i / j + 1]" - by (induct t arbitrary: i j s) (simp_all add: subst_Var lift_lift) - -lemma subst_lift [simp]: - "(lift t k)[s/k] = t" - by (induct t arbitrary: k s) simp_all - -lemma subst_subst: - "i < j + 1 \ t[lift v i / Suc j][u[v/j]/i] = t[u/i][v/j]" - by (induct t arbitrary: i j u v) - (simp_all add: diff_Suc subst_Var lift_lift [symmetric] lift_subst_lt - split: nat.split) - - -subsection {* Equivalence proof for optimized substitution *} - -lemma liftn_0 [simp]: "liftn 0 t k = t" - by (induct t arbitrary: k) (simp_all add: subst_Var) - -lemma liftn_lift [simp]: "liftn (Suc n) t k = lift (liftn n t k) k" - by (induct t arbitrary: k) (simp_all add: subst_Var) - -lemma substn_subst_n [simp]: "substn t s n = t[liftn n s 0 / n]" - by (induct t arbitrary: n) (simp_all add: subst_Var) - -theorem substn_subst_0: "substn t s 0 = t[s/0]" - by simp - - -subsection {* Preservation theorems *} - -text {* Not used in Church-Rosser proof, but in Strong - Normalization. \medskip *} - -theorem subst_preserves_beta [simp]: - "r \\<^sub>\ s ==> r[t/i] \\<^sub>\ s[t/i]" - by (induct arbitrary: t i set: beta) (simp_all add: subst_subst [symmetric]) - -theorem subst_preserves_beta': "r \\<^sub>\\<^sup>* s ==> r[t/i] \\<^sub>\\<^sup>* s[t/i]" - apply (induct set: rtranclp) - apply (rule rtranclp.rtrancl_refl) - apply (erule rtranclp.rtrancl_into_rtrancl) - apply (erule subst_preserves_beta) - done - -theorem lift_preserves_beta [simp]: - "r \\<^sub>\ s ==> lift r i \\<^sub>\ lift s i" - by (induct arbitrary: i set: beta) auto - -theorem lift_preserves_beta': "r \\<^sub>\\<^sup>* s ==> lift r i \\<^sub>\\<^sup>* lift s i" - apply (induct set: rtranclp) - apply (rule rtranclp.rtrancl_refl) - apply (erule rtranclp.rtrancl_into_rtrancl) - apply (erule lift_preserves_beta) - done - -theorem subst_preserves_beta2 [simp]: "r \\<^sub>\ s ==> t[r/i] \\<^sub>\\<^sup>* t[s/i]" - apply (induct t arbitrary: r s i) - apply (simp add: subst_Var r_into_rtranclp) - apply (simp add: rtrancl_beta_App) - apply (simp add: rtrancl_beta_Abs) - done - -theorem subst_preserves_beta2': "r \\<^sub>\\<^sup>* s ==> t[r/i] \\<^sub>\\<^sup>* t[s/i]" - apply (induct set: rtranclp) - apply (rule rtranclp.rtrancl_refl) - apply (erule rtranclp_trans) - apply (erule subst_preserves_beta2) - done - -end