diff -r 3610e0a7693c -r 36489d77c484 src/HOL/Library/Convex.thy --- a/src/HOL/Library/Convex.thy Fri Apr 04 16:43:47 2014 +0200 +++ b/src/HOL/Library/Convex.thy Thu Apr 03 23:51:52 2014 +0100 @@ -656,7 +656,7 @@ proof - have "\z. z > 0 \ DERIV (log b) z :> 1 / (ln b * z)" using DERIV_log by auto then have f': "\z. z > 0 \ DERIV (\ z. - log b z) z :> - 1 / (ln b * z)" - by (auto simp: DERIV_minus) + by (auto simp: divide_minus_left DERIV_minus) have "\z :: real. z > 0 \ DERIV inverse z :> - (inverse z ^ Suc (Suc 0))" using less_imp_neq[THEN not_sym, THEN DERIV_inverse] by auto from this[THEN DERIV_cmult, of _ "- 1 / ln b"] @@ -664,7 +664,7 @@ DERIV (\ z. (- 1 / ln b) * inverse z) z :> (- 1 / ln b) * (- (inverse z ^ Suc (Suc 0)))" by auto then have f''0: "\z :: real. z > 0 \ DERIV (\ z. - 1 / (ln b * z)) z :> 1 / (ln b * z * z)" - unfolding inverse_eq_divide by (auto simp add: mult_assoc) + by (auto simp add: inverse_eq_divide divide_minus_left mult_assoc) have f''_ge0: "\z :: real. z > 0 \ 1 / (ln b * z * z) \ 0" using `b > 1` by (auto intro!:less_imp_le simp add: divide_pos_pos[of 1] mult_pos_pos) from f''_ge0_imp_convex[OF pos_is_convex,