diff -r 3610e0a7693c -r 36489d77c484 src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Fri Apr 04 16:43:47 2014 +0200 +++ b/src/HOL/Transcendental.thy Thu Apr 03 23:51:52 2014 +0100 @@ -2145,7 +2145,7 @@ lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)" unfolding cos_coeff_def sin_coeff_def - by (simp del: mult_Suc, auto simp add: odd_Suc_mult_two_ex) + by (simp del: mult_Suc, auto simp add: divide_minus_left odd_Suc_mult_two_ex) lemma summable_sin: "summable (\n. sin_coeff n * x ^ n)" unfolding sin_coeff_def @@ -2169,7 +2169,7 @@ by (simp add: diffs_def sin_coeff_Suc real_of_nat_def del: of_nat_Suc) lemma diffs_cos_coeff: "diffs cos_coeff = (\n. - sin_coeff n)" - by (simp add: diffs_def cos_coeff_Suc real_of_nat_def del: of_nat_Suc) + by (simp add: divide_minus_left diffs_def cos_coeff_Suc real_of_nat_def del: of_nat_Suc) text{*Now at last we can get the derivatives of exp, sin and cos*} @@ -3239,7 +3239,7 @@ assume "x \ {-1..1}" then show "x \ sin ` {- pi / 2..pi / 2}" using arcsin_lbound arcsin_ubound - by (intro image_eqI[where x="arcsin x"]) auto + by (intro image_eqI[where x="arcsin x"]) (auto simp: divide_minus_left) qed simp finally show ?thesis . qed @@ -3338,12 +3338,14 @@ lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- pi/2))" by (rule filterlim_at_bot_at_right[where Q="\x. - pi/2 < x \ x < pi/2" and P="\x. True" and g=arctan]) - (auto simp: le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1 + (auto simp: le_less eventually_at dist_real_def divide_minus_left + simp del: less_divide_eq_numeral1 intro!: tan_monotone exI[of _ "pi/2"]) lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))" by (rule filterlim_at_top_at_left[where Q="\x. - pi/2 < x \ x < pi/2" and P="\x. True" and g=arctan]) - (auto simp: le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1 + (auto simp: le_less eventually_at dist_real_def divide_minus_left + simp del: less_divide_eq_numeral1 intro!: tan_monotone exI[of _ "pi/2"]) lemma tendsto_arctan_at_top: "(arctan ---> (pi/2)) at_top" @@ -3965,7 +3967,7 @@ show "tan (sgn x * pi / 2 - arctan x) = 1 / x" unfolding tan_inverse [of "arctan x", unfolded tan_arctan] unfolding sgn_real_def - by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff) + by (simp add: divide_minus_left tan_def cos_arctan sin_arctan sin_diff cos_diff) qed theorem pi_series: "pi / 4 = (\ k. (-1)^k * 1 / real (k*2+1))" (is "_ = ?SUM")