diff -r ea4dc7603f0b -r 371f023d3dbd src/HOL/Real/HahnBanach/ZornLemma.thy --- a/src/HOL/Real/HahnBanach/ZornLemma.thy Sun Jun 04 00:09:04 2000 +0200 +++ b/src/HOL/Real/HahnBanach/ZornLemma.thy Sun Jun 04 19:39:29 2000 +0200 @@ -3,9 +3,9 @@ Author: Gertrud Bauer, TU Munich *) -header {* Zorn's Lemma *}; +header {* Zorn's Lemma *} -theory ZornLemma = Aux + Zorn:; +theory ZornLemma = Aux + Zorn: text {* Zorn's Lemmas states: if every linear ordered subset of an ordered set $S$ has an upper bound in $S$, then there exists a maximal @@ -13,43 +13,43 @@ set inclusion. Since the union of a chain of sets is an upper bound for all elements of the chain, the conditions of Zorn's lemma can be modified: if $S$ is non-empty, it suffices to show that for every -non-empty chain $c$ in $S$ the union of $c$ also lies in $S$. *}; +non-empty chain $c$ in $S$ the union of $c$ also lies in $S$. *} theorem Zorn's_Lemma: "(!!c. c: chain S ==> EX x. x:c ==> Union c : S) ==> a:S - ==> EX y: S. ALL z: S. y <= z --> y = z"; -proof (rule Zorn_Lemma2); + ==> EX y: S. ALL z: S. y <= z --> y = z" +proof (rule Zorn_Lemma2) txt_raw {* \footnote{See - \url{http://isabelle.in.tum.de/library/HOL/HOL-Real/Zorn.html}} \isanewline *}; - assume r: "!!c. c: chain S ==> EX x. x:c ==> Union c : S"; - assume aS: "a:S"; - show "ALL c:chain S. EX y:S. ALL z:c. z <= y"; - proof; - fix c; assume "c:chain S"; - show "EX y:S. ALL z:c. z <= y"; - proof cases; + \url{http://isabelle.in.tum.de/library/HOL/HOL-Real/Zorn.html}} \isanewline *} + assume r: "!!c. c: chain S ==> EX x. x:c ==> Union c : S" + assume aS: "a:S" + show "ALL c:chain S. EX y:S. ALL z:c. z <= y" + proof + fix c assume "c:chain S" + show "EX y:S. ALL z:c. z <= y" + proof cases txt{* If $c$ is an empty chain, then every element - in $S$ is an upper bound of $c$. *}; + in $S$ is an upper bound of $c$. *} - assume "c={}"; - with aS; show ?thesis; by fast; + assume "c={}" + with aS show ?thesis by fast txt{* If $c$ is non-empty, then $\Union c$ - is an upper bound of $c$, lying in $S$. *}; + is an upper bound of $c$, lying in $S$. *} - next; - assume c: "c~={}"; - show ?thesis; - proof; - show "ALL z:c. z <= Union c"; by fast; - show "Union c : S"; - proof (rule r); - from c; show "EX x. x:c"; by fast; - qed; - qed; - qed; - qed; -qed; + next + assume c: "c~={}" + show ?thesis + proof + show "ALL z:c. z <= Union c" by fast + show "Union c : S" + proof (rule r) + from c show "EX x. x:c" by fast + qed + qed + qed + qed +qed -end; +end \ No newline at end of file