diff -r e96292f32c3c -r 38b73f7940af src/HOL/Auth/Public.thy --- a/src/HOL/Auth/Public.thy Mon Dec 28 21:47:32 2015 +0100 +++ b/src/HOL/Auth/Public.thy Mon Dec 28 23:13:33 2015 +0100 @@ -239,13 +239,13 @@ apply (auto dest!: parts_cut simp add: used_Nil) done -lemma MPair_used_D: "{|X,Y|} \ used H ==> X \ used H & Y \ used H" +lemma MPair_used_D: "\X,Y\ \ used H ==> X \ used H & Y \ used H" by (drule used_parts_subset_parts, simp, blast) text\There was a similar theorem in Event.thy, so perhaps this one can be moved up if proved directly by induction.\ lemma MPair_used [elim!]: - "[| {|X,Y|} \ used H; + "[| \X,Y\ \ used H; [| X \ used H; Y \ used H |] ==> P |] ==> P" by (blast dest: MPair_used_D)