diff -r 240509babf00 -r 3ba9be497c33 src/ZF/Zorn.thy --- a/src/ZF/Zorn.thy Mon Jul 01 18:16:18 2002 +0200 +++ b/src/ZF/Zorn.thy Tue Jul 02 13:28:08 2002 +0200 @@ -55,12 +55,10 @@ (*** Section 1. Mathematical Preamble ***) lemma Union_lemma0: "(ALL x:C. x<=A | B<=x) ==> Union(C)<=A | B<=Union(C)" -apply blast -done +by blast lemma Inter_lemma0: "[| c:C; ALL x:C. A<=x | x<=B |] ==> A<=Inter(C) | Inter(C)<=B" -apply blast -done +by blast (*** Section 2. The Transfinite Construction ***) @@ -71,9 +69,7 @@ done lemma increasingD2: "[| f: increasing(A); x<=A |] ==> x <= f`x" -apply (unfold increasing_def) -apply (blast intro: elim:); -done +by (unfold increasing_def, blast) lemmas TFin_UnionI = PowI [THEN TFin.Pow_UnionI, standard] @@ -87,8 +83,7 @@ !!x. [| x : TFin(S,next); P(x); next: increasing(S) |] ==> P(next`x); !!Y. [| Y <= TFin(S,next); ALL y:Y. P(y) |] ==> P(Union(Y)) |] ==> P(n)" -apply (erule TFin.induct) -apply blast+ +apply (erule TFin.induct, blast+) done @@ -119,19 +114,17 @@ apply (rule_tac n1 = "n" and m1 = "x" in TFin_linear_lemma1 [THEN disjE], assumption+) apply (blast del: subsetI - intro: increasing_trans subsetI) -apply (blast intro: elim:); + intro: increasing_trans subsetI, blast) (*second induction step*) apply (rule impI [THEN ballI]) apply (rule Union_lemma0 [THEN disjE]) apply (erule_tac [3] disjI2) -prefer 2 apply (blast intro: elim:); +prefer 2 apply blast apply (rule ballI) apply (drule bspec, assumption) apply (drule subsetD, assumption) apply (rule_tac n1 = "n" and m1 = "x" in TFin_linear_lemma1 [THEN disjE], - assumption+) -apply (blast intro: elim:); + assumption+, blast) apply (erule increasingD2 [THEN subset_trans, THEN disjI1]) apply (blast dest: TFin_is_subset)+ done @@ -159,9 +152,8 @@ "[| n: TFin(S,next); m: TFin(S,next); m = next`m |] ==> n<=m" apply (erule TFin_induct) apply (drule TFin_subsetD) -apply (assumption+) -apply (force ); -apply (blast) +apply (assumption+, force) +apply blast done (*Property 3.3 of section 3.3*) @@ -172,7 +164,7 @@ apply (rule_tac [2] equal_next_upper [THEN Union_least]) apply (assumption+) apply (erule ssubst) -apply (rule increasingD2 [THEN equalityI] , assumption) +apply (rule increasingD2 [THEN equalityI], assumption) apply (blast del: subsetI intro: subsetI TFin_UnionI TFin.nextI TFin_is_subset)+ done @@ -202,8 +194,7 @@ X : chain(S); X ~: maxchain(S) |] ==> ch ` super(S,X) : super(S,X)" apply (erule apply_type) -apply (unfold super_def maxchain_def) -apply blast +apply (unfold super_def maxchain_def, blast) done lemma choice_not_equals: @@ -211,8 +202,7 @@ X : chain(S); X ~: maxchain(S) |] ==> ch ` super(S,X) ~= X" apply (rule notI) -apply (drule choice_super) -apply assumption +apply (drule choice_super, assumption) apply assumption apply (simp add: super_def) done @@ -225,7 +215,7 @@ apply (rule_tac x="\X\Pow(S). if X \ chain(S) - maxchain(S) then ch ` super(S, X) else X" in bexI) -apply (force ); +apply force apply (unfold increasing_def) apply (rule CollectI) apply (rule lam_type) @@ -236,8 +226,7 @@ apply safe apply (drule choice_super) apply (assumption+) -apply (simp add: super_def) -apply blast +apply (simp add: super_def, blast) done (*Lemma 4*) @@ -252,16 +241,13 @@ apply (simp (no_asm_simp) add: chain_subset_Pow [THEN subsetD, THEN PowD] choice_super [THEN super_subset_chain [THEN subsetD]]) apply (unfold chain_def) -apply (rule CollectI , blast) -apply safe -apply (rule_tac m1 = "B" and n1 = "Ba" in TFin_subset_linear [THEN disjE]) -apply fast+ (*Blast_tac's slow*) +apply (rule CollectI, blast, safe) +apply (rule_tac m1 = "B" and n1 = "Ba" in TFin_subset_linear [THEN disjE], fast+) (*Blast_tac's slow*) done lemma Hausdorff: "EX c. c : maxchain(S)" apply (rule AC_Pi_Pow [THEN exE]) -apply (rule Hausdorff_next_exists [THEN bexE]) -apply assumption +apply (rule Hausdorff_next_exists [THEN bexE], assumption) apply (rename_tac ch "next") apply (subgoal_tac "Union (TFin (S,next)) : chain (S) ") prefer 2 @@ -271,7 +257,7 @@ apply (subgoal_tac "next ` Union (TFin (S,next)) = Union (TFin (S,next))") apply (rule_tac [2] equal_next_Union [THEN iffD2, symmetric]) apply (rule_tac [2] subset_refl [THEN TFin_UnionI]) -prefer 2 apply (assumption) +prefer 2 apply assumption apply (rule_tac [2] refl) apply (simp add: subset_refl [THEN TFin_UnionI, THEN TFin.dom_subset [THEN subsetD, THEN PowD]]) @@ -286,8 +272,7 @@ (*Used in the proof of Zorn's Lemma*) lemma chain_extend: "[| c: chain(A); z: A; ALL x:c. x<=z |] ==> cons(z,c) : chain(A)" -apply (unfold chain_def) -apply blast +apply (unfold chain_def, blast) done lemma Zorn: "ALL c: chain(S). Union(c) : S ==> EX y:S. ALL z:S. y<=z --> y=z" @@ -295,14 +280,13 @@ apply (simp add: maxchain_def) apply (rename_tac c) apply (rule_tac x = "Union (c)" in bexI) -prefer 2 apply (blast) +prefer 2 apply blast apply safe apply (rename_tac z) apply (rule classical) apply (subgoal_tac "cons (z,c) : super (S,c) ") apply (blast elim: equalityE) -apply (unfold super_def) -apply safe +apply (unfold super_def, safe) apply (fast elim: chain_extend) apply (fast elim: equalityE) done @@ -315,10 +299,9 @@ "[| n: TFin(S,next); Z <= TFin(S,next); z:Z; ~ Inter(Z) : Z |] ==> ALL m:Z. n<=m" apply (erule TFin_induct) -prefer 2 apply (blast) (*second induction step is easy*) +prefer 2 apply blast (*second induction step is easy*) apply (rule ballI) -apply (rule bspec [THEN TFin_subsetD, THEN disjE]) -apply (auto ); +apply (rule bspec [THEN TFin_subsetD, THEN disjE], auto) apply (subgoal_tac "m = Inter (Z) ") apply blast+ done @@ -330,8 +313,7 @@ apply (simp (no_asm_simp) add: Inter_singleton) apply (erule equal_singleton) apply (rule Union_upper [THEN equalityI]) -apply (rule_tac [2] subset_refl [THEN TFin_UnionI, THEN TFin_well_lemma5, THEN bspec]) -apply (blast intro: elim:)+ +apply (rule_tac [2] subset_refl [THEN TFin_UnionI, THEN TFin_well_lemma5, THEN bspec], blast+) done (*This theorem just packages the previous result*) @@ -341,17 +323,16 @@ apply (unfold Subset_rel_def linear_def) (*Prove the well-foundedness goal*) apply (rule wf_onI) -apply (frule well_ord_TFin_lemma , assumption) -apply (drule_tac x = "Inter (Z) " in bspec , assumption) +apply (frule well_ord_TFin_lemma, assumption) +apply (drule_tac x = "Inter (Z) " in bspec, assumption) apply blast (*Now prove the linearity goal*) apply (intro ballI) apply (case_tac "x=y") - apply (blast) + apply blast (*The x~=y case remains*) apply (rule_tac n1=x and m1=y in TFin_subset_linear [THEN disjE], - assumption+) -apply (blast intro: elim:)+ + assumption+, blast+) done (** Defining the "next" operation for Zermelo's Theorem **) @@ -369,7 +350,7 @@ next`X = (if X=S then S else cons(ch`(S-X), X))" apply (rule_tac x="\X\Pow(S). if X=S then S else cons(ch`(S-X), X)" in bexI) -apply (force ); +apply force apply (unfold increasing_def) apply (rule CollectI) apply (rule lam_type) @@ -414,13 +395,11 @@ (*The wellordering theorem*) lemma AC_well_ord: "EX r. well_ord(S,r)" apply (rule AC_Pi_Pow [THEN exE]) -apply (rule Zermelo_next_exists [THEN bexE]) -apply assumption +apply (rule Zermelo_next_exists [THEN bexE], assumption) apply (rule exI) apply (rule well_ord_rvimage) apply (erule_tac [2] well_ord_TFin) -apply (rule choice_imp_injection [THEN inj_weaken_type]) -apply (blast intro: elim:)+ +apply (rule choice_imp_injection [THEN inj_weaken_type], blast+) done end