diff -r c55f5631a4ec -r 3ccb92dfb5e9 src/HOL/Nominal/Examples/Crary.thy --- a/src/HOL/Nominal/Examples/Crary.thy Wed Mar 28 01:29:43 2007 +0200 +++ b/src/HOL/Nominal/Examples/Crary.thy Wed Mar 28 01:55:18 2007 +0200 @@ -261,7 +261,7 @@ v_nil[intro]: "valid []" | v_cons[intro]: "\valid \;a\\\ \ valid ((a,T)#\)" -nominal_inductive valid . +equivariance valid inductive_cases2 valid_cons_elim_auto[elim]:"valid ((x,T)#\)" @@ -562,7 +562,6 @@ with ih have "(x,T\<^isub>1)#\ \ App s (Var x) \ App u (Var x) : T\<^isub>2" by simp then show "\ \ s \ u : T\<^isub>1\T\<^isub>2" using fs by (auto simp add: fresh_prod) next - (* HERE *) case (QAP_App \ p q T\<^isub>1 T\<^isub>2 s t u) have "\ \ App q t \ u : T\<^isub>2" by fact then obtain r T\<^isub>1' v where ha: "\ \ q \ r : T\<^isub>1'\T\<^isub>2" and hb: "\ \ t \ v : T\<^isub>1'" and eq: "u = App r v"