diff -r a0cf3a19ee36 -r 3ce1cb7a24f0 src/HOL/Hyperreal/Series.thy --- a/src/HOL/Hyperreal/Series.thy Fri Feb 18 11:48:42 2005 +0100 +++ b/src/HOL/Hyperreal/Series.thy Fri Feb 18 11:48:53 2005 +0100 @@ -11,13 +11,15 @@ imports SEQ Lim begin +declare atLeastLessThan_empty[simp]; + syntax sumr :: "[nat,nat,(nat=>real)] => real" translations "sumr m n f" => "setsum (f::nat=>real) (atLeastLessThan m n)" constdefs sums :: "[nat=>real,real] => bool" (infixr "sums" 80) - "f sums s == (%n. sumr 0 n f) ----> s" + "f sums s == (%n. setsum f {0.. s" summable :: "(nat=>real) => bool" "summable f == (\s. f sums s)" @@ -27,9 +29,10 @@ lemma sumr_Suc [simp]: - "sumr m (Suc n) f = (if n < m then 0 else sumr m n f + f(n))" -by (simp add: atLeastLessThanSuc) + "setsum f {m.. m \ n; n \ p \ \ + setsum f {m.. sumr 0 p f + - sumr 0 n f = sumr n p (f::nat=>real)" -apply (drule_tac f1 = f in sumr_split_add [symmetric]) +using sumr_split_add [of 0 n p f,symmetric] apply (simp add: add_ac) done +lemma sumr_diff_mult_const: "sumr 0 n f - (real n*r) = sumr 0 n (%i. f i - r)" +by (simp add: diff_minus setsum_addf real_of_nat_def) + +(* lemma sumr_rabs: "abs(sumr m n (f::nat=>real)) \ sumr m n (%i. abs(f i))" by (simp add: setsum_abs) @@ -60,14 +72,12 @@ "(\r. m \ r & r < n --> f r = g r) ==> sumr m n f = sumr m n g" by (auto intro: setsum_cong) -lemma sumr_diff_mult_const: "sumr 0 n f - (real n*r) = sumr 0 n (%i. f i - r)" -by (simp add: diff_minus setsum_addf real_of_nat_def) - lemma sumr_less_bounds_zero [simp]: "n < m ==> sumr m n f = 0" by (simp add: atLeastLessThan_empty) lemma sumr_minus: "sumr m n (%i. - f i) = - sumr m n f" by (simp add: Finite_Set.setsum_negf) +*) lemma sumr_shift_bounds: "sumr (m+k) (n+k) f = sumr m n (%i. f(i + k))" by (induct "n", auto) @@ -114,6 +124,7 @@ apply (drule_tac x = n in spec, arith) done +(* FIXME generalize *) lemma rabs_sumr_rabs_cancel [simp]: "abs (sumr m n (%k. abs (f k))) = (sumr m n (%k. abs (f k)))" by (induct "n", simp_all add: add_increasing) @@ -132,10 +143,10 @@ apply (induct "n") apply (case_tac [2] "n", auto) done - +(* lemma sumr_diff: "sumr m n f - sumr m n g = sumr m n (%n. f n - g n)" -by (simp add: diff_minus sumr_add [symmetric] sumr_minus) - +by (simp add: diff_minus setsum_addf setsum_negf) +*) lemma sumr_subst [rule_format (no_asm)]: "(\p. m \ p & p < m+n --> (f p = g p)) --> sumr m n f = sumr m n g" by (induct "n", auto) @@ -213,14 +224,14 @@ done lemma sums_mult: "x sums x0 ==> (%n. c * x(n)) sums (c * x0)" -by (auto simp add: sums_def sumr_mult [symmetric] +by (auto simp add: sums_def setsum_mult [symmetric] intro!: LIMSEQ_mult intro: LIMSEQ_const) lemma sums_divide: "x sums x' ==> (%n. x(n)/c) sums (x'/c)" by (simp add: real_divide_def sums_mult mult_commute [of _ "inverse c"]) lemma sums_diff: "[| x sums x0; y sums y0 |] ==> (%n. x n - y n) sums (x0-y0)" -by (auto simp add: sums_def sumr_diff [symmetric] intro: LIMSEQ_diff) +by (auto simp add: sums_def setsum_subtractf intro: LIMSEQ_diff) lemma suminf_mult: "summable f ==> suminf f * c = suminf(%n. f n * c)" by (auto intro!: sums_unique sums_mult summable_sums simp add: mult_commute) @@ -234,7 +245,7 @@ by (auto intro!: sums_diff sums_unique summable_sums) lemma sums_minus: "x sums x0 ==> (%n. - x n) sums - x0" -by (auto simp add: sums_def intro!: LIMSEQ_minus simp add: sumr_minus) +by (auto simp add: sums_def intro!: LIMSEQ_minus simp add: setsum_negf) lemma sums_group: "[|summable f; 0 < k |] ==> (%n. sumr (n*k) (n*k + k) f) sums (suminf f)" @@ -356,7 +367,7 @@ apply (drule_tac x = m in spec) apply (auto, rotate_tac 2, drule_tac x = n in spec) apply (rule_tac y = "sumr m n (%k. abs (f k))" in order_le_less_trans) -apply (rule sumr_rabs) +apply (rule setsum_abs) apply (rule_tac y = "sumr m n g" in order_le_less_trans) apply (auto intro: sumr_le2 simp add: abs_interval_iff) done @@ -387,18 +398,18 @@ text{*Absolute convergence imples normal convergence*} lemma summable_rabs_cancel: "summable (%n. abs (f n)) ==> summable f" -apply (auto simp add: sumr_rabs summable_Cauchy) +apply (auto simp add: summable_Cauchy) apply (drule spec, auto) apply (rule_tac x = N in exI, auto) apply (drule spec, auto) apply (rule_tac y = "sumr m n (%n. abs (f n))" in order_le_less_trans) -apply (auto intro: sumr_rabs) +apply (auto) done text{*Absolute convergence of series*} lemma summable_rabs: "summable (%n. abs (f n)) ==> abs(suminf f) \ suminf (%n. abs(f n))" -by (auto intro: LIMSEQ_le LIMSEQ_imp_rabs summable_rabs_cancel summable_sumr_LIMSEQ_suminf sumr_rabs) +by (auto intro: LIMSEQ_le LIMSEQ_imp_rabs summable_rabs_cancel summable_sumr_LIMSEQ_suminf) subsection{* The Ratio Test*} @@ -465,19 +476,13 @@ val summable_def = thm"summable_def"; val suminf_def = thm"suminf_def"; -val sumr_add = thm "sumr_add"; -val sumr_mult = thm "sumr_mult"; val sumr_split_add = thm "sumr_split_add"; -val sumr_rabs = thm "sumr_rabs"; -val sumr_fun_eq = thm "sumr_fun_eq"; -val sumr_diff_mult_const = thm "sumr_diff_mult_const"; val sumr_minus_one_realpow_zero = thm "sumr_minus_one_realpow_zero"; val sumr_le2 = thm "sumr_le2"; val rabs_sumr_rabs_cancel = thm "rabs_sumr_rabs_cancel"; val sumr_zero = thm "sumr_zero"; val Suc_le_imp_diff_ge2 = thm "Suc_le_imp_diff_ge2"; val sumr_one_lb_realpow_zero = thm "sumr_one_lb_realpow_zero"; -val sumr_diff = thm "sumr_diff"; val sumr_subst = thm "sumr_subst"; val sumr_bound = thm "sumr_bound"; val sumr_bound2 = thm "sumr_bound2";