diff -r b933700f0384 -r 3d4953e88449 src/HOL/Word/WordArith.thy --- a/src/HOL/Word/WordArith.thy Sun Oct 21 14:21:54 2007 +0200 +++ b/src/HOL/Word/WordArith.thy Sun Oct 21 14:53:44 2007 +0200 @@ -117,28 +117,28 @@ lemmas unat_eq_zero = unat_0_iff lemma unat_gt_0: "(0 < unat x) = (x ~= 0)" - by (simp add : neq0_conv unat_0_iff [symmetric]) +by (auto simp: unat_0_iff [symmetric]) lemma ucast_0 [simp] : "ucast 0 = 0" - unfolding ucast_def - by simp (simp add: word_0_wi) +unfolding ucast_def +by simp (simp add: word_0_wi) lemma sint_0 [simp] : "sint 0 = 0" - unfolding sint_uint - by (simp add: Pls_def [symmetric]) +unfolding sint_uint +by (simp add: Pls_def [symmetric]) lemma scast_0 [simp] : "scast 0 = 0" - apply (unfold scast_def) - apply simp - apply (simp add: word_0_wi) - done +apply (unfold scast_def) +apply simp +apply (simp add: word_0_wi) +done lemma sint_n1 [simp] : "sint -1 = -1" - apply (unfold word_m1_wi_Min) - apply (simp add: word_sbin.eq_norm) - apply (unfold Min_def number_of_eq) - apply simp - done +apply (unfold word_m1_wi_Min) +apply (simp add: word_sbin.eq_norm) +apply (unfold Min_def number_of_eq) +apply simp +done lemma scast_n1 [simp] : "scast -1 = -1" apply (unfold scast_def sint_n1) @@ -1242,15 +1242,15 @@ lemmas card_word = trans [OF card_eq card_lessThan', standard] lemma finite_word_UNIV: "finite (UNIV :: 'a :: len word set)" - apply (rule contrapos_np) - prefer 2 - apply (erule card_infinite) - apply (simp add : card_word neq0_conv) - done +apply (rule contrapos_np) + prefer 2 + apply (erule card_infinite) +apply (simp add: card_word) +done lemma card_word_size: "card (UNIV :: 'a :: len word set) = (2 ^ size (x :: 'a word))" - unfolding word_size by (rule card_word) +unfolding word_size by (rule card_word) end