diff -r a0e6bda62b7b -r 3d51fbf81c17 src/HOL/MicroJava/BV/Step.thy --- a/src/HOL/MicroJava/BV/Step.thy Fri Oct 05 21:50:37 2001 +0200 +++ b/src/HOL/MicroJava/BV/Step.thy Fri Oct 05 21:52:39 2001 +0200 @@ -114,26 +114,26 @@ "succs (Invoke C mn fpTs) pc = [pc+1]" -lemma 1: "2 < length a ==> (\l l' l'' ls. a = l#l'#l''#ls)" +lemma 1: "Suc (Suc 0) < length a ==> (\l l' l'' ls. a = l#l'#l''#ls)" proof (cases a) - fix x xs assume "a = x#xs" "2 < length a" + fix x xs assume "a = x#xs" "Suc (Suc 0) < length a" thus ?thesis by - (cases xs, simp, cases "tl xs", auto) qed auto -lemma 2: "\(2 < length a) ==> a = [] \ (\ l. a = [l]) \ (\ l l'. a = [l,l'])" +lemma 2: "\(Suc (Suc 0) < length a) ==> a = [] \ (\ l. a = [l]) \ (\ l l'. a = [l,l'])" proof -; - assume "\(2 < length a)" - hence "length a < (Suc 2)" by simp - hence * : "length a = 0 \ length a = 1' \ length a = 2" + assume "\(Suc (Suc 0) < length a)" + hence "length a < Suc (Suc (Suc 0))" by simp + hence * : "length a = 0 \ length a = Suc 0 \ length a = Suc (Suc 0)" by (auto simp add: less_Suc_eq) { fix x - assume "length x = 1'" + assume "length x = Suc 0" hence "\ l. x = [l]" by - (cases x, auto) } note 0 = this - have "length a = 2 ==> \l l'. a = [l,l']" by (cases a, auto dest: 0) + have "length a = Suc (Suc 0) ==> \l l'. a = [l,l']" by (cases a, auto dest: 0) with * show ?thesis by (auto dest: 0) qed @@ -152,7 +152,7 @@ lemma appStore[simp]: "(app (Store idx) G maxs rT (Some s)) = (\ ts ST LT. s = (ts#ST,LT) \ idx < length LT)" - by (cases s, cases "2 < length (fst s)", auto dest: 1 2 simp add: app_def) + by (cases s, cases "Suc (Suc 0) < length (fst s)", auto dest: 1 2 simp add: app_def) lemma appLitPush[simp]: "(app (LitPush v) G maxs rT (Some s)) = (maxs < length (fst s) \ typeof (\v. None) v \ None)" @@ -162,13 +162,13 @@ "(app (Getfield F C) G maxs rT (Some s)) = (\ oT vT ST LT. s = (oT#ST, LT) \ is_class G C \ field (G,C) F = Some (C,vT) \ G \ oT \ (Class C))" - by (cases s, cases "2 < length (fst s)", auto dest!: 1 2 simp add: app_def) + by (cases s, cases "Suc (Suc 0) < length (fst s)", auto dest!: 1 2 simp add: app_def) lemma appPutField[simp]: "(app (Putfield F C) G maxs rT (Some s)) = (\ vT vT' oT ST LT. s = (vT#oT#ST, LT) \ is_class G C \ field (G,C) F = Some (C, vT') \ G \ oT \ (Class C) \ G \ vT \ vT')" - by (cases s, cases "2 < length (fst s)", auto dest!: 1 2 simp add: app_def) + by (cases s, cases "Suc (Suc 0) < length (fst s)", auto dest!: 1 2 simp add: app_def) lemma appNew[simp]: "(app (New C) G maxs rT (Some s)) = (is_class G C \ maxs < length (fst s))" @@ -181,27 +181,27 @@ lemma appPop[simp]: "(app Pop G maxs rT (Some s)) = (\ts ST LT. s = (ts#ST,LT))" - by (cases s, cases "2 < length (fst s)", auto dest: 1 2 simp add: app_def) + by (cases s, cases "Suc (Suc 0) < length (fst s)", auto dest: 1 2 simp add: app_def) lemma appDup[simp]: "(app Dup G maxs rT (Some s)) = (\ts ST LT. s = (ts#ST,LT) \ maxs < Suc (length ST))" - by (cases s, cases "2 < length (fst s)", auto dest: 1 2 simp add: app_def) + by (cases s, cases "Suc (Suc 0) < length (fst s)", auto dest: 1 2 simp add: app_def) lemma appDup_x1[simp]: "(app Dup_x1 G maxs rT (Some s)) = (\ts1 ts2 ST LT. s = (ts1#ts2#ST,LT) \ maxs < Suc (Suc (length ST)))" - by (cases s, cases "2 < length (fst s)", auto dest: 1 2 simp add: app_def) + by (cases s, cases "Suc (Suc 0) < length (fst s)", auto dest: 1 2 simp add: app_def) lemma appDup_x2[simp]: "(app Dup_x2 G maxs rT (Some s)) = (\ts1 ts2 ts3 ST LT. s = (ts1#ts2#ts3#ST,LT) \ maxs < Suc (Suc (Suc (length ST))))" - by (cases s, cases "2 < length (fst s)", auto dest: 1 2 simp add: app_def) + by (cases s, cases "Suc (Suc 0) < length (fst s)", auto dest: 1 2 simp add: app_def) lemma appSwap[simp]: "app Swap G maxs rT (Some s) = (\ts1 ts2 ST LT. s = (ts1#ts2#ST,LT))" - by (cases s, cases "2 < length (fst s)", auto dest: 1 2 simp add: app_def) + by (cases s, cases "Suc (Suc 0) < length (fst s)", auto dest: 1 2 simp add: app_def) lemma appIAdd[simp]: @@ -238,12 +238,12 @@ lemma appIfcmpeq[simp]: "app (Ifcmpeq b) G maxs rT (Some s) = (\ts1 ts2 ST LT. s = (ts1#ts2#ST,LT) \ ((\ p. ts1 = PrimT p \ ts2 = PrimT p) \ (\r r'. ts1 = RefT r \ ts2 = RefT r')))" - by (cases s, cases "2 < length (fst s)", auto dest: 1 2 simp add: app_def) + by (cases s, cases "Suc (Suc 0) < length (fst s)", auto dest: 1 2 simp add: app_def) lemma appReturn[simp]: "app Return G maxs rT (Some s) = (\T ST LT. s = (T#ST,LT) \ (G \ T \ rT))" - by (cases s, cases "2 < length (fst s)", auto dest: 1 2 simp add: app_def) + by (cases s, cases "Suc (Suc 0) < length (fst s)", auto dest: 1 2 simp add: app_def) lemma appGoto[simp]: "app (Goto branch) G maxs rT (Some s) = True"