diff -r a80d8ec6c998 -r 3dda49e08b9d src/HOL/Limits.thy --- a/src/HOL/Limits.thy Fri Jan 04 21:49:06 2019 +0100 +++ b/src/HOL/Limits.thy Fri Jan 04 23:22:53 2019 +0100 @@ -1292,11 +1292,11 @@ qed -subsection \Relate @{const at}, @{const at_left} and @{const at_right}\ +subsection \Relate \<^const>\at\, \<^const>\at_left\ and \<^const>\at_right\\ text \ - This lemmas are useful for conversion between @{term "at x"} to @{term "at_left x"} and - @{term "at_right x"} and also @{term "at_right 0"}. + This lemmas are useful for conversion between \<^term>\at x\ to \<^term>\at_left x\ and + \<^term>\at_right x\ and also \<^term>\at_right 0\. \ lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real] @@ -2060,13 +2060,13 @@ apply (rule filterlim_compose[OF tendsto_inverse_0]) by (metis assms eventually_at_top_linorderI filterlim_at_top_dense filterlim_at_top_imp_at_infinity) -text \The sequence @{term "1/n"} tends to 0 as @{term n} tends to infinity.\ +text \The sequence \<^term>\1/n\ tends to 0 as \<^term>\n\ tends to infinity.\ lemma LIMSEQ_inverse_real_of_nat: "(\n. inverse (real (Suc n))) \ 0" by (metis filterlim_compose tendsto_inverse_0 filterlim_mono order_refl filterlim_Suc filterlim_compose[OF filterlim_real_sequentially] at_top_le_at_infinity) text \ - The sequence @{term "r + 1/n"} tends to @{term r} as @{term n} tends to + The sequence \<^term>\r + 1/n\ tends to \<^term>\r\ as \<^term>\n\ tends to infinity is now easily proved. \ @@ -2389,7 +2389,7 @@ by eventually_elim (auto simp: N) qed -text \Limit of @{term "c^n"} for @{term"\c\ < 1"}.\ +text \Limit of \<^term>\c^n\ for \<^term>\\c\ < 1\.\ lemma LIMSEQ_abs_realpow_zero: "\c\ < 1 \ (\n. \c\ ^ n :: real) \ 0" by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])