diff -r 517feb558c77 -r 3e04c9ca001a src/HOL/Set.thy --- a/src/HOL/Set.thy Fri Oct 09 19:51:20 2015 +0200 +++ b/src/HOL/Set.thy Fri Oct 09 20:26:03 2015 +0200 @@ -33,12 +33,6 @@ not_member ("op \") and not_member ("(_/ \ _)" [51, 51] 50) -notation (HTML output) - member ("op \") and - member ("(_/ \ _)" [51, 51] 50) and - not_member ("op \") and - not_member ("(_/ \ _)" [51, 51] 50) - text \Set comprehensions\ @@ -167,12 +161,6 @@ subset_eq ("op \") and subset_eq ("(_/ \ _)" [51, 51] 50) -notation (HTML output) - subset ("op \") and - subset ("(_/ \ _)" [51, 51] 50) and - subset_eq ("op \") and - subset_eq ("(_/ \ _)" [51, 51] 50) - abbreviation (input) supset :: "'a set \ 'a set \ bool" where "supset \ greater" @@ -210,11 +198,6 @@ "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3\!_\_./ _)" [0, 0, 10] 10) "_Bleast" :: "id => 'a set => bool => 'a" ("(3LEAST_\_./ _)" [0, 0, 10] 10) -syntax (HTML output) - "_Ball" :: "pttrn => 'a set => bool => bool" ("(3\_\_./ _)" [0, 0, 10] 10) - "_Bex" :: "pttrn => 'a set => bool => bool" ("(3\_\_./ _)" [0, 0, 10] 10) - "_Bex1" :: "pttrn => 'a set => bool => bool" ("(3\!_\_./ _)" [0, 0, 10] 10) - translations "ALL x:A. P" == "CONST Ball A (%x. P)" "EX x:A. P" == "CONST Bex A (%x. P)" @@ -242,13 +225,6 @@ "_setleEx" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3?! _<=_./ _)" [0, 0, 10] 10) -syntax (HTML output) - "_setlessAll" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) - "_setlessEx" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) - "_setleAll" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) - "_setleEx" :: "[idt, 'a, bool] => bool" ("(3\_\_./ _)" [0, 0, 10] 10) - "_setleEx1" :: "[idt, 'a, bool] => bool" ("(3\!_\_./ _)" [0, 0, 10] 10) - translations "\A\B. P" => "ALL A. A \ B --> P" "\A\B. P" => "EX A. A \ B & P" @@ -701,9 +677,6 @@ notation (xsymbols) inter (infixl "\" 70) -notation (HTML output) - inter (infixl "\" 70) - lemma Int_def: "A \ B = {x. x \ A \ x \ B}" by (simp add: inf_set_def inf_fun_def) @@ -735,9 +708,6 @@ notation (xsymbols) union (infixl "\" 65) -notation (HTML output) - union (infixl "\" 65) - lemma Un_def: "A \ B = {x. x \ A \ x \ B}" by (simp add: sup_set_def sup_fun_def)