diff -r a8a8eca85801 -r 3e491e34a62e src/HOL/Int.thy --- a/src/HOL/Int.thy Mon Sep 21 14:44:32 2015 +0200 +++ b/src/HOL/Int.thy Mon Sep 21 19:52:13 2015 +0100 @@ -518,7 +518,7 @@ lemma int_cases3 [case_names zero pos neg]: fixes k :: int assumes "k = 0 \ P" and "\n. k = int n \ n > 0 \ P" - and "\n. k = - int n \ n > 0 \ P" + and "\n. k = - int n \ n > 0 \ P" shows "P" proof (cases k "0::int" rule: linorder_cases) case equal with assms(1) show P by simp @@ -890,7 +890,7 @@ moreover have "k \ range abs" if "k \ \" for k :: int using that by induct simp ultimately show ?thesis by blast -qed +qed lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)" apply (rule sym)