diff -r fe9f43a1e5bd -r 3e56528a39f7 src/HOL/Nominal/Examples/Compile.thy --- a/src/HOL/Nominal/Examples/Compile.thy Mon Oct 23 00:48:45 2006 +0200 +++ b/src/HOL/Nominal/Examples/Compile.thy Mon Oct 23 00:51:16 2006 +0200 @@ -1,4 +1,4 @@ -(* $Id: *) +(* $Id$ *) (* A challenge suggested by Adam Chlipala *) @@ -190,9 +190,12 @@ lemma fcb_subst_Case: assumes a: "x\r" "x\r2" "y\r" "y\r1" - shows "x\(subst_Case z t') e x e1 y e2 r r1 r2 \ y\(subst_Case z t') e x e1 y e2 r r1 r2" + shows "x\(subst_Case z t') e x e1 y e2 r r1 r2" + and "y\(subst_Case z t') e x e1 y e2 r r1 r2" using a - by (simp add: subst_Case_def abs_fresh) + by (simp_all add: subst_Case_def abs_fresh) + +lemmas trm_recs = trm.recs[where P="\_. True", simplified] lemma subst: shows "(Var x)[y::=t'] = (if x=y then t' else (Var x))" @@ -209,22 +212,25 @@ (Case (e[y::=t']) of inl x \ (e1[y::=t']) | inr z \ (e2[y::=t']))" apply(unfold subst_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_subst)+ apply(simp add: fcb_subst_Lam) apply(simp add: fcb_subst_Case) +apply(simp add: fcb_subst_Case) apply(simp add: subst_Var_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_subst)+ apply(simp add: fcb_subst_Lam) apply(simp add: fcb_subst_Case) +apply(simp add: fcb_subst_Case) apply(simp add: subst_App_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_subst)+ apply(simp add: fcb_subst_Lam) apply(simp add: fcb_subst_Case) +apply(simp add: fcb_subst_Case) apply(fresh_guess add: fs_name1 subst_Var_def perm_if eq_eqvt) apply(fresh_guess add: fs_name1 subst_Lam_def) apply(fresh_guess add: fs_name1 subst_App_def) @@ -239,46 +245,53 @@ apply(simp, simp) apply(simp add: subst_Lam_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_subst)+ apply(simp add: fcb_subst_Lam) apply(simp add: fcb_subst_Case) +apply(simp add: fcb_subst_Case) apply(simp add: subst_Const_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_subst)+ apply(simp add: fcb_subst_Lam) apply(simp add: fcb_subst_Case) +apply(simp add: fcb_subst_Case) apply(simp add: subst_Pr_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_subst)+ apply(simp add: fcb_subst_Lam) apply(simp add: fcb_subst_Case) +apply(simp add: fcb_subst_Case) apply(simp add: subst_Fst_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_subst)+ apply(simp add: fcb_subst_Lam) apply(simp add: fcb_subst_Case) +apply(simp add: fcb_subst_Case) apply(simp add: subst_Snd_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_subst)+ apply(simp add: fcb_subst_Lam) apply(simp add: fcb_subst_Case) +apply(simp add: fcb_subst_Case) apply(simp add: subst_InL_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_subst)+ apply(simp add: fcb_subst_Lam) apply(simp add: fcb_subst_Case) +apply(simp add: fcb_subst_Case) apply(simp add: subst_InR_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_subst)+ apply(simp add: fcb_subst_Lam) apply(simp add: fcb_subst_Case) +apply(simp add: fcb_subst_Case) apply(fresh_guess add: fs_name1 subst_Var_def perm_if eq_eqvt) apply(fresh_guess add: fs_name1 subst_Var_def perm_if eq_eqvt) apply(fresh_guess add: fs_name1 subst_Lam_def) @@ -374,6 +387,8 @@ shows "x\(subst_ILam y t') x t r" by (simp add: subst_ILam_def abs_fresh) +lemmas trmI_recs = trmI.recs[where P="\_. True", simplified] + lemma Isubst: shows "(IVar x)[y::=t'] = (if x=y then t' else (IVar x))" and "(IApp t1 t2)[y::=t'] = IApp (t1[y::=t']) (t2[y::=t'])" @@ -387,17 +402,17 @@ and "(Iif e e1 e2)[y::=t'] = Iif (e[y::=t']) (e1[y::=t']) (e2[y::=t'])" apply(unfold subst_trmI_def) apply(rule trans) -apply(rule trmI.recs[where P="\_. True", simplified]) +apply(rule trmI_recs) apply(rule fin_supp_Isubst)+ apply(simp add: fcb_subst_ILam) apply(simp add: subst_IVar_def) apply(rule trans) -apply(rule trmI.recs[where P="\_. True", simplified]) +apply(rule trmI_recs) apply(rule fin_supp_Isubst)+ apply(simp add: fcb_subst_ILam) apply(simp add: subst_IApp_def) apply(rule trans) -apply(rule trmI.recs[where P="\_. True", simplified]) +apply(rule trmI_recs) apply(rule fin_supp_Isubst)+ apply(simp add: fcb_subst_ILam) apply(fresh_guess add: fs_name1 subst_IVar_def perm_if eq_eqvt) @@ -414,37 +429,37 @@ apply(simp, simp) apply(simp add: subst_ILam_def) apply(rule trans) -apply(rule trmI.recs[where P="\_. True", simplified]) +apply(rule trmI_recs) apply(rule fin_supp_Isubst)+ apply(simp add: fcb_subst_ILam) apply(simp add: subst_INat_def) apply(rule trans) -apply(rule trmI.recs[where P="\_. True", simplified]) +apply(rule trmI_recs) apply(rule fin_supp_Isubst)+ apply(simp add: fcb_subst_ILam) apply(simp add: subst_IUnit_def) apply(rule trans) -apply(rule trmI.recs[where P="\_. True", simplified]) +apply(rule trmI_recs) apply(rule fin_supp_Isubst)+ apply(simp add: fcb_subst_ILam) apply(simp add: subst_ISucc_def) apply(rule trans) -apply(rule trmI.recs[where P="\_. True", simplified]) +apply(rule trmI_recs) apply(rule fin_supp_Isubst)+ apply(simp add: fcb_subst_ILam) apply(simp add: subst_IAss_def) apply(rule trans) -apply(rule trmI.recs[where P="\_. True", simplified]) +apply(rule trmI_recs) apply(rule fin_supp_Isubst)+ apply(simp add: fcb_subst_ILam) apply(simp add: subst_IRef_def) apply(rule trans) -apply(rule trmI.recs[where P="\_. True", simplified]) +apply(rule trmI_recs) apply(rule fin_supp_Isubst)+ apply(simp add: fcb_subst_ILam) apply(simp add: subst_ISeq_def) apply(rule trans) -apply(rule trmI.recs[where P="\_. True", simplified]) +apply(rule trmI_recs) apply(rule fin_supp_Isubst)+ apply(simp add: fcb_subst_ILam) apply(simp add: subst_Iif_def) @@ -539,15 +554,17 @@ trans_type::"ty \ tyI" "trans_type \ \ ty_rec (trans_data) (trans_arrow) \" +lemmas ty_recs = ty.recs[where P="\_. True", simplified] + lemma trans_type: shows "trans_type (Data \) = DataI(NatI)" and "trans_type (\1\\2) = (trans_type \1)\(trans_type \2)" apply(unfold trans_type_def) apply(rule trans) -apply(rule ty.recs[where P="\_. True", simplified]) +apply(rule ty_recs) apply(simp add: trans_data_def) apply(rule trans) -apply(rule ty.recs[where P="\_. True", simplified]) +apply(rule ty_recs) apply(simp add: trans_arrow_def) done @@ -631,9 +648,10 @@ lemma fcb_trans_Case: assumes a: "x\r" "x\r2" "y\r" "y\r1" - shows "x\(trans_Case) e x e1 y e2 r r1 r2 \ y\(trans_Case) e x e1 y e2 r r1 r2" + shows "x\(trans_Case) e x e1 y e2 r r1 r2" + and "y\(trans_Case) e x e1 y e2 r r1 r2" using a - by (simp add: trans_Case_def abs_fresh Isubst_fresh) + by (simp_all add: trans_Case_def abs_fresh Isubst_fresh) lemma trans: shows "trans (Var x) = (IVar x)" @@ -663,22 +681,25 @@ Iif (IRef (ISucc v)) (v2[x2::=IRef (ISucc (ISucc v))]) (v1[x1::=IRef (ISucc (ISucc v))]))" apply(unfold trans_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_trans)+ apply(simp add: fcb_trans_Lam) apply(simp add: fcb_trans_Case) +apply(simp add: fcb_trans_Case) apply(simp add: trans_Var_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_trans)+ apply(simp add: fcb_trans_Lam) apply(simp add: fcb_trans_Case) +apply(simp add: fcb_trans_Case) apply(simp add: trans_App_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_trans)+ apply(simp add: fcb_trans_Lam) apply(simp add: fcb_trans_Case) +apply(simp add: fcb_trans_Case) apply(fresh_guess add: fs_name1 trans_Var_def perm_if eq_eqvt) apply(fresh_guess add: fs_name1 trans_Lam_def) apply(fresh_guess add: fs_name1 trans_App_def) @@ -691,46 +712,53 @@ apply(fresh_guess add: fs_name1 trans_Case_def Let_def Isubst_eqvt) apply(simp add: trans_Lam_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_trans)+ apply(simp add: fcb_trans_Lam) apply(simp add: fcb_trans_Case) +apply(simp add: fcb_trans_Case) apply(simp add: trans_Const_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_trans)+ apply(simp add: fcb_trans_Lam) apply(simp add: fcb_trans_Case) +apply(simp add: fcb_trans_Case) apply(simp add: trans_Pr_def Let_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_trans)+ apply(simp add: fcb_trans_Lam) apply(simp add: fcb_trans_Case) +apply(simp add: fcb_trans_Case) apply(simp add: trans_Fst_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_trans)+ apply(simp add: fcb_trans_Lam) apply(simp add: fcb_trans_Case) +apply(simp add: fcb_trans_Case) apply(simp add: trans_Snd_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_trans)+ apply(simp add: fcb_trans_Lam) apply(simp add: fcb_trans_Case) +apply(simp add: fcb_trans_Case) apply(simp add: trans_InL_def Let_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_trans)+ apply(simp add: fcb_trans_Lam) apply(simp add: fcb_trans_Case) +apply(simp add: fcb_trans_Case) apply(simp add: trans_InR_def Let_def) apply(rule trans) -apply(rule trm.recs[where P="\_. True", simplified]) +apply(rule trm_recs) apply(rule fin_supp_trans)+ apply(simp add: fcb_trans_Lam) apply(simp add: fcb_trans_Case) +apply(simp add: fcb_trans_Case) apply(fresh_guess add: fs_name1 trans_Var_def perm_if eq_eqvt) apply(fresh_guess add: fs_name1 trans_Var_def perm_if eq_eqvt) apply(fresh_guess add: fs_name1 trans_Lam_def)