diff -r c1262feb61c7 -r 3edd5f813f01 src/HOL/Isar_examples/MutilatedCheckerboard.thy --- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy Mon Jun 22 22:51:08 2009 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,299 +0,0 @@ -(* Title: HOL/Isar_examples/MutilatedCheckerboard.thy - ID: $Id$ - Author: Markus Wenzel, TU Muenchen (Isar document) - Lawrence C Paulson, Cambridge University Computer Laboratory (original scripts) -*) - -header {* The Mutilated Checker Board Problem *} - -theory MutilatedCheckerboard imports Main begin - -text {* - The Mutilated Checker Board Problem, formalized inductively. See - \cite{paulson-mutilated-board} and - \url{http://isabelle.in.tum.de/library/HOL/Induct/Mutil.html} for the - original tactic script version. -*} - -subsection {* Tilings *} - -inductive_set - tiling :: "'a set set => 'a set set" - for A :: "'a set set" - where - empty: "{} : tiling A" - | Un: "a : A ==> t : tiling A ==> a <= - t ==> a Un t : tiling A" - - -text "The union of two disjoint tilings is a tiling." - -lemma tiling_Un: - assumes "t : tiling A" and "u : tiling A" and "t Int u = {}" - shows "t Un u : tiling A" -proof - - let ?T = "tiling A" - from `t : ?T` and `t Int u = {}` - show "t Un u : ?T" - proof (induct t) - case empty - with `u : ?T` show "{} Un u : ?T" by simp - next - case (Un a t) - show "(a Un t) Un u : ?T" - proof - - have "a Un (t Un u) : ?T" - using `a : A` - proof (rule tiling.Un) - from `(a Un t) Int u = {}` have "t Int u = {}" by blast - then show "t Un u: ?T" by (rule Un) - from `a <= - t` and `(a Un t) Int u = {}` - show "a <= - (t Un u)" by blast - qed - also have "a Un (t Un u) = (a Un t) Un u" - by (simp only: Un_assoc) - finally show ?thesis . - qed - qed -qed - - -subsection {* Basic properties of ``below'' *} - -constdefs - below :: "nat => nat set" - "below n == {i. i < n}" - -lemma below_less_iff [iff]: "(i: below k) = (i < k)" - by (simp add: below_def) - -lemma below_0: "below 0 = {}" - by (simp add: below_def) - -lemma Sigma_Suc1: - "m = n + 1 ==> below m <*> B = ({n} <*> B) Un (below n <*> B)" - by (simp add: below_def less_Suc_eq) blast - -lemma Sigma_Suc2: - "m = n + 2 ==> A <*> below m = - (A <*> {n}) Un (A <*> {n + 1}) Un (A <*> below n)" - by (auto simp add: below_def) - -lemmas Sigma_Suc = Sigma_Suc1 Sigma_Suc2 - - -subsection {* Basic properties of ``evnodd'' *} - -constdefs - evnodd :: "(nat * nat) set => nat => (nat * nat) set" - "evnodd A b == A Int {(i, j). (i + j) mod 2 = b}" - -lemma evnodd_iff: - "(i, j): evnodd A b = ((i, j): A & (i + j) mod 2 = b)" - by (simp add: evnodd_def) - -lemma evnodd_subset: "evnodd A b <= A" - by (unfold evnodd_def, rule Int_lower1) - -lemma evnoddD: "x : evnodd A b ==> x : A" - by (rule subsetD, rule evnodd_subset) - -lemma evnodd_finite: "finite A ==> finite (evnodd A b)" - by (rule finite_subset, rule evnodd_subset) - -lemma evnodd_Un: "evnodd (A Un B) b = evnodd A b Un evnodd B b" - by (unfold evnodd_def) blast - -lemma evnodd_Diff: "evnodd (A - B) b = evnodd A b - evnodd B b" - by (unfold evnodd_def) blast - -lemma evnodd_empty: "evnodd {} b = {}" - by (simp add: evnodd_def) - -lemma evnodd_insert: "evnodd (insert (i, j) C) b = - (if (i + j) mod 2 = b - then insert (i, j) (evnodd C b) else evnodd C b)" - by (simp add: evnodd_def) blast - - -subsection {* Dominoes *} - -inductive_set - domino :: "(nat * nat) set set" - where - horiz: "{(i, j), (i, j + 1)} : domino" - | vertl: "{(i, j), (i + 1, j)} : domino" - -lemma dominoes_tile_row: - "{i} <*> below (2 * n) : tiling domino" - (is "?B n : ?T") -proof (induct n) - case 0 - show ?case by (simp add: below_0 tiling.empty) -next - case (Suc n) - let ?a = "{i} <*> {2 * n + 1} Un {i} <*> {2 * n}" - have "?B (Suc n) = ?a Un ?B n" - by (auto simp add: Sigma_Suc Un_assoc) - moreover have "... : ?T" - proof (rule tiling.Un) - have "{(i, 2 * n), (i, 2 * n + 1)} : domino" - by (rule domino.horiz) - also have "{(i, 2 * n), (i, 2 * n + 1)} = ?a" by blast - finally show "... : domino" . - show "?B n : ?T" by (rule Suc) - show "?a <= - ?B n" by blast - qed - ultimately show ?case by simp -qed - -lemma dominoes_tile_matrix: - "below m <*> below (2 * n) : tiling domino" - (is "?B m : ?T") -proof (induct m) - case 0 - show ?case by (simp add: below_0 tiling.empty) -next - case (Suc m) - let ?t = "{m} <*> below (2 * n)" - have "?B (Suc m) = ?t Un ?B m" by (simp add: Sigma_Suc) - moreover have "... : ?T" - proof (rule tiling_Un) - show "?t : ?T" by (rule dominoes_tile_row) - show "?B m : ?T" by (rule Suc) - show "?t Int ?B m = {}" by blast - qed - ultimately show ?case by simp -qed - -lemma domino_singleton: - assumes d: "d : domino" and "b < 2" - shows "EX i j. evnodd d b = {(i, j)}" (is "?P d") - using d -proof induct - from `b < 2` have b_cases: "b = 0 | b = 1" by arith - fix i j - note [simp] = evnodd_empty evnodd_insert mod_Suc - from b_cases show "?P {(i, j), (i, j + 1)}" by rule auto - from b_cases show "?P {(i, j), (i + 1, j)}" by rule auto -qed - -lemma domino_finite: - assumes d: "d: domino" - shows "finite d" - using d -proof induct - fix i j :: nat - show "finite {(i, j), (i, j + 1)}" by (intro finite.intros) - show "finite {(i, j), (i + 1, j)}" by (intro finite.intros) -qed - - -subsection {* Tilings of dominoes *} - -lemma tiling_domino_finite: - assumes t: "t : tiling domino" (is "t : ?T") - shows "finite t" (is "?F t") - using t -proof induct - show "?F {}" by (rule finite.emptyI) - fix a t assume "?F t" - assume "a : domino" then have "?F a" by (rule domino_finite) - from this and `?F t` show "?F (a Un t)" by (rule finite_UnI) -qed - -lemma tiling_domino_01: - assumes t: "t : tiling domino" (is "t : ?T") - shows "card (evnodd t 0) = card (evnodd t 1)" - using t -proof induct - case empty - show ?case by (simp add: evnodd_def) -next - case (Un a t) - let ?e = evnodd - note hyp = `card (?e t 0) = card (?e t 1)` - and at = `a <= - t` - have card_suc: - "!!b. b < 2 ==> card (?e (a Un t) b) = Suc (card (?e t b))" - proof - - fix b :: nat assume "b < 2" - have "?e (a Un t) b = ?e a b Un ?e t b" by (rule evnodd_Un) - also obtain i j where e: "?e a b = {(i, j)}" - proof - - from `a \ domino` and `b < 2` - have "EX i j. ?e a b = {(i, j)}" by (rule domino_singleton) - then show ?thesis by (blast intro: that) - qed - moreover have "... Un ?e t b = insert (i, j) (?e t b)" by simp - moreover have "card ... = Suc (card (?e t b))" - proof (rule card_insert_disjoint) - from `t \ tiling domino` have "finite t" - by (rule tiling_domino_finite) - then show "finite (?e t b)" - by (rule evnodd_finite) - from e have "(i, j) : ?e a b" by simp - with at show "(i, j) ~: ?e t b" by (blast dest: evnoddD) - qed - ultimately show "?thesis b" by simp - qed - then have "card (?e (a Un t) 0) = Suc (card (?e t 0))" by simp - also from hyp have "card (?e t 0) = card (?e t 1)" . - also from card_suc have "Suc ... = card (?e (a Un t) 1)" - by simp - finally show ?case . -qed - - -subsection {* Main theorem *} - -constdefs - mutilated_board :: "nat => nat => (nat * nat) set" - "mutilated_board m n == - below (2 * (m + 1)) <*> below (2 * (n + 1)) - - {(0, 0)} - {(2 * m + 1, 2 * n + 1)}" - -theorem mutil_not_tiling: "mutilated_board m n ~: tiling domino" -proof (unfold mutilated_board_def) - let ?T = "tiling domino" - let ?t = "below (2 * (m + 1)) <*> below (2 * (n + 1))" - let ?t' = "?t - {(0, 0)}" - let ?t'' = "?t' - {(2 * m + 1, 2 * n + 1)}" - - show "?t'' ~: ?T" - proof - have t: "?t : ?T" by (rule dominoes_tile_matrix) - assume t'': "?t'' : ?T" - - let ?e = evnodd - have fin: "finite (?e ?t 0)" - by (rule evnodd_finite, rule tiling_domino_finite, rule t) - - note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff - have "card (?e ?t'' 0) < card (?e ?t' 0)" - proof - - have "card (?e ?t' 0 - {(2 * m + 1, 2 * n + 1)}) - < card (?e ?t' 0)" - proof (rule card_Diff1_less) - from _ fin show "finite (?e ?t' 0)" - by (rule finite_subset) auto - show "(2 * m + 1, 2 * n + 1) : ?e ?t' 0" by simp - qed - then show ?thesis by simp - qed - also have "... < card (?e ?t 0)" - proof - - have "(0, 0) : ?e ?t 0" by simp - with fin have "card (?e ?t 0 - {(0, 0)}) < card (?e ?t 0)" - by (rule card_Diff1_less) - then show ?thesis by simp - qed - also from t have "... = card (?e ?t 1)" - by (rule tiling_domino_01) - also have "?e ?t 1 = ?e ?t'' 1" by simp - also from t'' have "card ... = card (?e ?t'' 0)" - by (rule tiling_domino_01 [symmetric]) - finally have "... < ..." . then show False .. - qed -qed - -end