diff -r 5fe58ca9cf40 -r 3eef7a43cd51 src/HOL/Library/Saturated.thy --- a/src/HOL/Library/Saturated.thy Sat Apr 11 12:47:46 2015 +0200 +++ b/src/HOL/Library/Saturated.thy Sat Apr 11 13:12:57 2015 +0200 @@ -161,13 +161,18 @@ "of_nat (numeral k) = (numeral k :: 'a::len sat)" by simp -definition sat_of_nat :: "nat \ ('a::len) sat" +context +begin + +qualified definition sat_of_nat :: "nat \ ('a::len) sat" where [code_abbrev]: "sat_of_nat = of_nat" lemma [code abstract]: "nat_of (sat_of_nat n :: ('a::len) sat) = min (len_of TYPE('a)) n" by (simp add: sat_of_nat_def) +end + instance sat :: (len) finite proof show "finite (UNIV::'a sat set)" @@ -271,7 +276,5 @@ by (auto simp: bot_sat_def) qed -hide_const (open) sat_of_nat - end