diff -r 0e7b145c3a89 -r 3f2a9f400168 doc-src/TutorialI/CTL/document/PDL.tex --- a/doc-src/TutorialI/CTL/document/PDL.tex Wed May 25 09:03:53 2005 +0200 +++ b/doc-src/TutorialI/CTL/document/PDL.tex Wed May 25 09:04:24 2005 +0200 @@ -87,9 +87,11 @@ \isamarkuptrue% \isacommand{lemma}\ mono{\isacharunderscore}ef{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline \isamarkupfalse% -\isamarkupfalse% +\isacommand{apply}{\isacharparenleft}rule\ monoI{\isacharparenright}\isanewline \isamarkupfalse% +\isacommand{apply}\ blast\isanewline \isamarkupfalse% +\isacommand{done}\isamarkupfalse% % \begin{isamarkuptext}% \noindent @@ -99,30 +101,112 @@ \isamarkuptrue% \isacommand{lemma}\ EF{\isacharunderscore}lemma{\isacharcolon}\isanewline \ \ {\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}\isamarkupfalse% -\isamarkuptrue% -\isamarkupfalse% -\isamarkupfalse% -\isamarkupfalse% -\isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +The equality is proved in the canonical fashion by proving that each set +includes the other; the inclusion is shown pointwise:% +\end{isamarkuptxt}% \isamarkuptrue% -\isamarkupfalse% -\isamarkupfalse% +\isacommand{apply}{\isacharparenleft}rule\ equalityI{\isacharparenright}\isanewline +\ \isamarkupfalse% +\isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline +\ \isamarkupfalse% +\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isamarkupfalse% \isamarkupfalse% -\isamarkuptrue% -\isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +Simplification leaves us with the following first subgoal +\begin{isabelle}% +\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A% +\end{isabelle} +which is proved by \isa{lfp}-induction:% +\end{isamarkuptxt}% +\ \isamarkuptrue% +\isacommand{apply}{\isacharparenleft}erule\ lfp{\isacharunderscore}induct{\isacharparenright}\isanewline +\ \ \isamarkupfalse% +\isacommand{apply}{\isacharparenleft}rule\ mono{\isacharunderscore}ef{\isacharparenright}\isanewline +\ \isamarkupfalse% +\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +Having disposed of the monotonicity subgoal, +simplification leaves us with the following goal: +\begin{isabelle} +\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline +\ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline +\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A +\end{isabelle} +It is proved by \isa{blast}, using the transitivity of +\isa{M\isactrlsup {\isacharasterisk}}.% +\end{isamarkuptxt}% +\ \isamarkuptrue% +\isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtrancl{\isacharunderscore}trans{\isacharparenright}\isamarkupfalse% +% +\begin{isamarkuptxt}% +We now return to the second set inclusion subgoal, which is again proved +pointwise:% +\end{isamarkuptxt}% \isamarkuptrue% -\isamarkupfalse% -\isamarkupfalse% -\isamarkuptrue% -\isamarkupfalse% -\isamarkuptrue% +\isacommand{apply}{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline \isamarkupfalse% -\isamarkuptrue% -\isamarkupfalse% +\isacommand{apply}{\isacharparenleft}simp{\isacharcomma}\ clarify{\isacharparenright}\isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +After simplification and clarification we are left with +\begin{isabelle}% +\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ t\ {\isasymin}\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}% +\end{isabelle} +This goal is proved by induction on \isa{{\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}}. But since the model +checker works backwards (from \isa{t} to \isa{s}), we cannot use the +induction theorem \isa{rtrancl{\isacharunderscore}induct}: it works in the +forward direction. Fortunately the converse induction theorem +\isa{converse{\isacharunderscore}rtrancl{\isacharunderscore}induct} already exists: +\begin{isabelle}% +\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ P\ b{\isacharsemicolon}\isanewline +\isaindent{\ \ \ \ \ \ }{\isasymAnd}y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}z{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ P\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ y{\isasymrbrakk}\isanewline +\isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ P\ a% +\end{isabelle} +It says that if \isa{{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}} and we know \isa{P\ b} then we can infer +\isa{P\ a} provided each step backwards from a predecessor \isa{z} of +\isa{b} preserves \isa{P}.% +\end{isamarkuptxt}% \isamarkuptrue% -\isamarkupfalse% +\isacommand{apply}{\isacharparenleft}erule\ converse{\isacharunderscore}rtrancl{\isacharunderscore}induct{\isacharparenright}\isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +The base case +\begin{isabelle}% +\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}% +\end{isabelle} +is solved by unrolling \isa{lfp} once% +\end{isamarkuptxt}% +\ \isamarkuptrue% +\isacommand{apply}{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharparenright}\isamarkupfalse% +% +\begin{isamarkuptxt}% +\begin{isabelle}% +\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}% +\end{isabelle} +and disposing of the resulting trivial subgoal automatically:% +\end{isamarkuptxt}% +\ \isamarkuptrue% +\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +The proof of the induction step is identical to the one for the base case:% +\end{isamarkuptxt}% +\isamarkuptrue% +\isacommand{apply}{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharparenright}\isanewline \isamarkupfalse% +\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline \isamarkupfalse% +\isacommand{done}\isamarkupfalse% % \begin{isamarkuptext}% The main theorem is proved in the familiar manner: induction followed by @@ -131,9 +215,11 @@ \isamarkuptrue% \isacommand{theorem}\ {\isachardoublequote}mc\ f\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ s\ {\isasymTurnstile}\ f{\isacharbraceright}{\isachardoublequote}\isanewline \isamarkupfalse% -\isamarkupfalse% +\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ f{\isacharparenright}\isanewline \isamarkupfalse% +\isacommand{apply}{\isacharparenleft}auto\ simp\ add{\isacharcolon}\ EF{\isacharunderscore}lemma{\isacharparenright}\isanewline \isamarkupfalse% +\isacommand{done}\isamarkupfalse% % \begin{isamarkuptext}% \begin{exercise} @@ -158,17 +244,14 @@ \isamarkupfalse% \isamarkupfalse% \isamarkupfalse% -\isanewline -\isamarkupfalse% -\isamarkupfalse% -\isamarkupfalse% -\isanewline \isamarkupfalse% \isamarkupfalse% \isamarkupfalse% \isamarkupfalse% \isamarkupfalse% -\isanewline +\isamarkupfalse% +\isamarkupfalse% +\isamarkupfalse% \isamarkupfalse% \isamarkupfalse% \end{isabellebody}%