diff -r 0e7b145c3a89 -r 3f2a9f400168 doc-src/TutorialI/Misc/document/AdvancedInd.tex --- a/doc-src/TutorialI/Misc/document/AdvancedInd.tex Wed May 25 09:03:53 2005 +0200 +++ b/doc-src/TutorialI/Misc/document/AdvancedInd.tex Wed May 25 09:04:24 2005 +0200 @@ -29,11 +29,99 @@ \isamarkuptrue% \isacommand{lemma}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymLongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}\isanewline \isamarkupfalse% -\isamarkupfalse% +\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}\isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +But induction produces the warning +\begin{quote}\tt +Induction variable occurs also among premises! +\end{quote} +and leads to the base case +\begin{isabelle}% +\ {\isadigit{1}}{\isachardot}\ xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymLongrightarrow}\ hd\ {\isacharparenleft}rev\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ last\ {\isacharbrackleft}{\isacharbrackright}% +\end{isabelle} +Simplification reduces the base case to this: +\begin{isabelle} +\ 1.\ xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd\ []\ =\ last\ [] +\end{isabelle} +We cannot prove this equality because we do not know what \isa{hd} and +\isa{last} return when applied to \isa{{\isacharbrackleft}{\isacharbrackright}}. + +We should not have ignored the warning. Because the induction +formula is only the conclusion, induction does not affect the occurrence of \isa{xs} in the premises. +Thus the case that should have been trivial +becomes unprovable. Fortunately, the solution is easy:\footnote{A similar +heuristic applies to rule inductions; see \S\ref{sec:rtc}.} +\begin{quote} +\emph{Pull all occurrences of the induction variable into the conclusion +using \isa{{\isasymlongrightarrow}}.} +\end{quote} +Thus we should state the lemma as an ordinary +implication~(\isa{{\isasymlongrightarrow}}), letting +\attrdx{rule_format} (\S\ref{sec:forward}) convert the +result to the usual \isa{{\isasymLongrightarrow}} form:% +\end{isamarkuptxt}% \isamarkuptrue% \isamarkupfalse% \isacommand{lemma}\ hd{\isacharunderscore}rev\ {\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}\isamarkupfalse% \isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +This time, induction leaves us with a trivial base case: +\begin{isabelle}% +\ {\isadigit{1}}{\isachardot}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongrightarrow}\ hd\ {\isacharparenleft}rev\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ last\ {\isacharbrackleft}{\isacharbrackright}% +\end{isabelle} +And \isa{auto} completes the proof. + +If there are multiple premises $A@1$, \dots, $A@n$ containing the +induction variable, you should turn the conclusion $C$ into +\[ A@1 \longrightarrow \cdots A@n \longrightarrow C. \] +Additionally, you may also have to universally quantify some other variables, +which can yield a fairly complex conclusion. However, \isa{rule{\isacharunderscore}format} +can remove any number of occurrences of \isa{{\isasymforall}} and +\isa{{\isasymlongrightarrow}}. + +\index{induction!on a term}% +A second reason why your proposition may not be amenable to induction is that +you want to induct on a complex term, rather than a variable. In +general, induction on a term~$t$ requires rephrasing the conclusion~$C$ +as +\begin{equation}\label{eqn:ind-over-term} +\forall y@1 \dots y@n.~ x = t \longrightarrow C. +\end{equation} +where $y@1 \dots y@n$ are the free variables in $t$ and $x$ is a new variable. +Now you can perform induction on~$x$. An example appears in +\S\ref{sec:complete-ind} below. + +The very same problem may occur in connection with rule induction. Remember +that it requires a premise of the form $(x@1,\dots,x@k) \in R$, where $R$ is +some inductively defined set and the $x@i$ are variables. If instead we have +a premise $t \in R$, where $t$ is not just an $n$-tuple of variables, we +replace it with $(x@1,\dots,x@k) \in R$, and rephrase the conclusion $C$ as +\[ \forall y@1 \dots y@n.~ (x@1,\dots,x@k) = t \longrightarrow C. \] +For an example see \S\ref{sec:CTL-revisited} below. + +Of course, all premises that share free variables with $t$ need to be pulled into +the conclusion as well, under the \isa{{\isasymforall}}, again using \isa{{\isasymlongrightarrow}} as shown above. + +Readers who are puzzled by the form of statement +(\ref{eqn:ind-over-term}) above should remember that the +transformation is only performed to permit induction. Once induction +has been applied, the statement can be transformed back into something quite +intuitive. For example, applying wellfounded induction on $x$ (w.r.t.\ +$\prec$) to (\ref{eqn:ind-over-term}) and transforming the result a +little leads to the goal +\[ \bigwedge\overline{y}.\ + \forall \overline{z}.\ t\,\overline{z} \prec t\,\overline{y}\ \longrightarrow\ C\,\overline{z} + \ \Longrightarrow\ C\,\overline{y} \] +where $\overline{y}$ stands for $y@1 \dots y@n$ and the dependence of $t$ and +$C$ on the free variables of $t$ has been made explicit. +Unfortunately, this induction schema cannot be expressed as a +single theorem because it depends on the number of free variables in $t$ --- +the notation $\overline{y}$ is merely an informal device.% +\end{isamarkuptxt}% \isamarkuptrue% \isamarkupfalse% % @@ -82,14 +170,41 @@ \end{isamarkuptext}% \isamarkuptrue% \isacommand{lemma}\ f{\isacharunderscore}incr{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isasymforall}i{\isachardot}\ k\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isachardoublequote}\isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +To perform induction on \isa{k} using \isa{nat{\isacharunderscore}less{\isacharunderscore}induct}, we use +the same general induction method as for recursion induction (see +\S\ref{sec:recdef-induction}):% +\end{isamarkuptxt}% \isamarkuptrue% -\isamarkupfalse% +\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ k\ rule{\isacharcolon}\ nat{\isacharunderscore}less{\isacharunderscore}induct{\isacharparenright}\isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +We get the following proof state: +\begin{isabelle}% +\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ {\isasymforall}i{\isachardot}\ m\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i\ {\isasymLongrightarrow}\ {\isasymforall}i{\isachardot}\ n\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i% +\end{isabelle} +After stripping the \isa{{\isasymforall}i}, the proof continues with a case +distinction on \isa{i}. The case \isa{i\ {\isacharequal}\ {\isadigit{0}}} is trivial and we focus on +the other case:% +\end{isamarkuptxt}% \isamarkuptrue% +\isacommand{apply}{\isacharparenleft}rule\ allI{\isacharparenright}\isanewline \isamarkupfalse% -\isamarkupfalse% -\isamarkupfalse% +\isacommand{apply}{\isacharparenleft}case{\isacharunderscore}tac\ i{\isacharparenright}\isanewline +\ \isamarkupfalse% +\isacommand{apply}{\isacharparenleft}simp{\isacharparenright}\isamarkupfalse% +% +\begin{isamarkuptxt}% +\begin{isabelle}% +\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n\ i\ nat{\isachardot}\isanewline +\isaindent{\ {\isadigit{1}}{\isachardot}\ \ \ \ }{\isasymlbrakk}{\isasymforall}m{\isacharless}n{\isachardot}\ {\isasymforall}i{\isachardot}\ m\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isacharsemicolon}\ i\ {\isacharequal}\ Suc\ nat{\isasymrbrakk}\ {\isasymLongrightarrow}\ n\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i% +\end{isabelle}% +\end{isamarkuptxt}% \isamarkuptrue% -\isamarkupfalse% +\isacommand{by}{\isacharparenleft}blast\ intro{\isacharbang}{\isacharcolon}\ f{\isacharunderscore}ax\ Suc{\isacharunderscore}leI\ intro{\isacharcolon}\ le{\isacharunderscore}less{\isacharunderscore}trans{\isacharparenright}\isamarkupfalse% % \begin{isamarkuptext}% \noindent @@ -180,10 +295,18 @@ \isamarkuptrue% \isacommand{lemma}\ induct{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m{\isachardoublequote}\isanewline \isamarkupfalse% +\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ n{\isacharparenright}\isamarkupfalse% +% +\begin{isamarkuptxt}% +\noindent +The base case is vacuously true. For the induction step (\isa{m\ {\isacharless}\ Suc\ n}) we distinguish two cases: case \isa{m\ {\isacharless}\ n} is true by induction +hypothesis and case \isa{m\ {\isacharequal}\ n} follows from the assumption, again using +the induction hypothesis:% +\end{isamarkuptxt}% +\ \isamarkuptrue% +\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline \isamarkupfalse% -\isamarkuptrue% -\isamarkupfalse% -\isamarkupfalse% +\isacommand{by}{\isacharparenleft}blast\ elim{\isacharcolon}\ less{\isacharunderscore}SucE{\isacharparenright}\isamarkupfalse% % \begin{isamarkuptext}% \noindent @@ -202,7 +325,7 @@ \isamarkuptrue% \isacommand{theorem}\ nat{\isacharunderscore}less{\isacharunderscore}induct{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ P\ n{\isachardoublequote}\isanewline \isamarkupfalse% -\isamarkupfalse% +\isacommand{by}{\isacharparenleft}insert\ induct{\isacharunderscore}lem{\isacharcomma}\ blast{\isacharparenright}\isamarkupfalse% % \begin{isamarkuptext}% HOL already provides the mother of