diff -r c4f2cac288d2 -r 4005298550a6 src/HOL/Analysis/Convex.thy --- a/src/HOL/Analysis/Convex.thy Tue Apr 09 21:05:48 2019 +0100 +++ b/src/HOL/Analysis/Convex.thy Wed Apr 10 13:34:55 2019 +0100 @@ -272,8 +272,8 @@ with *[rule_format, of "2" ?u ?x] have s: "(\j \ {1..2}. ?u j *\<^sub>R ?x j) \ s" using mu xy by auto have grarr: "(\j \ {Suc (Suc 0)..2}. ?u j *\<^sub>R ?x j) = (1 - \) *\<^sub>R y" - using sum_head_Suc[of "Suc (Suc 0)" 2 "\ j. (1 - \) *\<^sub>R y"] by auto - from sum_head_Suc[of "Suc 0" 2 "\ j. ?u j *\<^sub>R ?x j", simplified this] + using sum.atLeast_Suc_atMost[of "Suc (Suc 0)" 2 "\ j. (1 - \) *\<^sub>R y"] by auto + from sum.atLeast_Suc_atMost[of "Suc 0" 2 "\ j. ?u j *\<^sub>R ?x j", simplified this] have "(\j \ {1..2}. ?u j *\<^sub>R ?x j) = \ *\<^sub>R x + (1 - \) *\<^sub>R y" by auto then have "(1 - \) *\<^sub>R y + \ *\<^sub>R x \ s"