diff -r 87950f752099 -r 401f91ed8a93 src/Cube/Example.thy --- a/src/Cube/Example.thy Sat Oct 22 16:44:34 2011 +0200 +++ b/src/Cube/Example.thy Sat Oct 22 16:57:24 2011 +0200 @@ -30,98 +30,98 @@ subsection {* Simple types *} -schematic_lemma "A:* |- A->A : ?T" +schematic_lemma "A:* \ A\A : ?T" by (depth_solve rules) -schematic_lemma "A:* |- Lam a:A. a : ?T" +schematic_lemma "A:* \ \ a:A. a : ?T" by (depth_solve rules) -schematic_lemma "A:* B:* b:B |- Lam x:A. b : ?T" +schematic_lemma "A:* B:* b:B \ \ x:A. b : ?T" by (depth_solve rules) -schematic_lemma "A:* b:A |- (Lam a:A. a)^b: ?T" +schematic_lemma "A:* b:A \ (\ a:A. a)^b: ?T" by (depth_solve rules) -schematic_lemma "A:* B:* c:A b:B |- (Lam x:A. b)^ c: ?T" +schematic_lemma "A:* B:* c:A b:B \ (\ x:A. b)^ c: ?T" by (depth_solve rules) -schematic_lemma "A:* B:* |- Lam a:A. Lam b:B. a : ?T" +schematic_lemma "A:* B:* \ \ a:A. \ b:B. a : ?T" by (depth_solve rules) subsection {* Second-order types *} -schematic_lemma (in L2) "|- Lam A:*. Lam a:A. a : ?T" +schematic_lemma (in L2) "\ \ A:*. \ a:A. a : ?T" by (depth_solve rules) -schematic_lemma (in L2) "A:* |- (Lam B:*.Lam b:B. b)^A : ?T" +schematic_lemma (in L2) "A:* \ (\ B:*.\ b:B. b)^A : ?T" by (depth_solve rules) -schematic_lemma (in L2) "A:* b:A |- (Lam B:*.Lam b:B. b) ^ A ^ b: ?T" +schematic_lemma (in L2) "A:* b:A \ (\ B:*.\ b:B. b) ^ A ^ b: ?T" by (depth_solve rules) -schematic_lemma (in L2) "|- Lam B:*.Lam a:(Pi A:*.A).a ^ ((Pi A:*.A)->B) ^ a: ?T" +schematic_lemma (in L2) "\ \ B:*.\ a:(\ A:*.A).a ^ ((\ A:*.A)\B) ^ a: ?T" by (depth_solve rules) subsection {* Weakly higher-order propositional logic *} -schematic_lemma (in Lomega) "|- Lam A:*.A->A : ?T" +schematic_lemma (in Lomega) "\ \ A:*.A\A : ?T" by (depth_solve rules) -schematic_lemma (in Lomega) "B:* |- (Lam A:*.A->A) ^ B : ?T" +schematic_lemma (in Lomega) "B:* \ (\ A:*.A\A) ^ B : ?T" by (depth_solve rules) -schematic_lemma (in Lomega) "B:* b:B |- (Lam y:B. b): ?T" +schematic_lemma (in Lomega) "B:* b:B \ (\ y:B. b): ?T" by (depth_solve rules) -schematic_lemma (in Lomega) "A:* F:*->* |- F^(F^A): ?T" +schematic_lemma (in Lomega) "A:* F:*\* \ F^(F^A): ?T" by (depth_solve rules) -schematic_lemma (in Lomega) "A:* |- Lam F:*->*.F^(F^A): ?T" +schematic_lemma (in Lomega) "A:* \ \ F:*\*.F^(F^A): ?T" by (depth_solve rules) subsection {* LP *} -schematic_lemma (in LP) "A:* |- A -> * : ?T" +schematic_lemma (in LP) "A:* \ A \ * : ?T" by (depth_solve rules) -schematic_lemma (in LP) "A:* P:A->* a:A |- P^a: ?T" +schematic_lemma (in LP) "A:* P:A\* a:A \ P^a: ?T" by (depth_solve rules) -schematic_lemma (in LP) "A:* P:A->A->* a:A |- Pi a:A. P^a^a: ?T" +schematic_lemma (in LP) "A:* P:A\A\* a:A \ \ a:A. P^a^a: ?T" by (depth_solve rules) -schematic_lemma (in LP) "A:* P:A->* Q:A->* |- Pi a:A. P^a -> Q^a: ?T" +schematic_lemma (in LP) "A:* P:A\* Q:A\* \ \ a:A. P^a \ Q^a: ?T" by (depth_solve rules) -schematic_lemma (in LP) "A:* P:A->* |- Pi a:A. P^a -> P^a: ?T" +schematic_lemma (in LP) "A:* P:A\* \ \ a:A. P^a \ P^a: ?T" by (depth_solve rules) -schematic_lemma (in LP) "A:* P:A->* |- Lam a:A. Lam x:P^a. x: ?T" +schematic_lemma (in LP) "A:* P:A\* \ \ a:A. \ x:P^a. x: ?T" by (depth_solve rules) -schematic_lemma (in LP) "A:* P:A->* Q:* |- (Pi a:A. P^a->Q) -> (Pi a:A. P^a) -> Q : ?T" +schematic_lemma (in LP) "A:* P:A\* Q:* \ (\ a:A. P^a\Q) \ (\ a:A. P^a) \ Q : ?T" by (depth_solve rules) -schematic_lemma (in LP) "A:* P:A->* Q:* a0:A |- - Lam x:Pi a:A. P^a->Q. Lam y:Pi a:A. P^a. x^a0^(y^a0): ?T" +schematic_lemma (in LP) "A:* P:A\* Q:* a0:A \ + \ x:\ a:A. P^a\Q. \ y:\ a:A. P^a. x^a0^(y^a0): ?T" by (depth_solve rules) subsection {* Omega-order types *} -schematic_lemma (in L2) "A:* B:* |- Pi C:*.(A->B->C)->C : ?T" +schematic_lemma (in L2) "A:* B:* \ \ C:*.(A\B\C)\C : ?T" by (depth_solve rules) -schematic_lemma (in Lomega2) "|- Lam A:*.Lam B:*.Pi C:*.(A->B->C)->C : ?T" +schematic_lemma (in Lomega2) "\ \ A:*.\ B:*.\ C:*.(A\B\C)\C : ?T" by (depth_solve rules) -schematic_lemma (in Lomega2) "|- Lam A:*.Lam B:*.Lam x:A. Lam y:B. x : ?T" +schematic_lemma (in Lomega2) "\ \ A:*.\ B:*.\ x:A. \ y:B. x : ?T" by (depth_solve rules) -schematic_lemma (in Lomega2) "A:* B:* |- ?p : (A->B) -> ((B->Pi P:*.P)->(A->Pi P:*.P))" +schematic_lemma (in Lomega2) "A:* B:* \ ?p : (A\B) \ ((B\\ P:*.P)\(A\\ P:*.P))" apply (strip_asms rules) apply (rule lam_ss) apply (depth_solve1 rules) @@ -145,15 +145,15 @@ subsection {* Second-order Predicate Logic *} -schematic_lemma (in LP2) "A:* P:A->* |- Lam a:A. P^a->(Pi A:*.A) : ?T" +schematic_lemma (in LP2) "A:* P:A\* \ \ a:A. P^a\(\ A:*.A) : ?T" by (depth_solve rules) -schematic_lemma (in LP2) "A:* P:A->A->* |- - (Pi a:A. Pi b:A. P^a^b->P^b^a->Pi P:*.P) -> Pi a:A. P^a^a->Pi P:*.P : ?T" +schematic_lemma (in LP2) "A:* P:A\A\* \ + (\ a:A. \ b:A. P^a^b\P^b^a\\ P:*.P) \ \ a:A. P^a^a\\ P:*.P : ?T" by (depth_solve rules) -schematic_lemma (in LP2) "A:* P:A->A->* |- - ?p: (Pi a:A. Pi b:A. P^a^b->P^b^a->Pi P:*.P) -> Pi a:A. P^a^a->Pi P:*.P" +schematic_lemma (in LP2) "A:* P:A\A\* \ + ?p: (\ a:A. \ b:A. P^a^b\P^b^a\\ P:*.P) \ \ a:A. P^a^a\\ P:*.P" -- {* Antisymmetry implies irreflexivity: *} apply (strip_asms rules) apply (rule lam_ss) @@ -174,22 +174,22 @@ subsection {* LPomega *} -schematic_lemma (in LPomega) "A:* |- Lam P:A->A->*.Lam a:A. P^a^a : ?T" +schematic_lemma (in LPomega) "A:* \ \ P:A\A\*.\ a:A. P^a^a : ?T" by (depth_solve rules) -schematic_lemma (in LPomega) "|- Lam A:*.Lam P:A->A->*.Lam a:A. P^a^a : ?T" +schematic_lemma (in LPomega) "\ \ A:*.\ P:A\A\*.\ a:A. P^a^a : ?T" by (depth_solve rules) subsection {* Constructions *} -schematic_lemma (in CC) "|- Lam A:*.Lam P:A->*.Lam a:A. P^a->Pi P:*.P: ?T" +schematic_lemma (in CC) "\ \ A:*.\ P:A\*.\ a:A. P^a\\ P:*.P: ?T" by (depth_solve rules) -schematic_lemma (in CC) "|- Lam A:*.Lam P:A->*.Pi a:A. P^a: ?T" +schematic_lemma (in CC) "\ \ A:*.\ P:A\*.\ a:A. P^a: ?T" by (depth_solve rules) -schematic_lemma (in CC) "A:* P:A->* a:A |- ?p : (Pi a:A. P^a)->P^a" +schematic_lemma (in CC) "A:* P:A\* a:A \ ?p : (\ a:A. P^a)\P^a" apply (strip_asms rules) apply (rule lam_ss) apply (depth_solve1 rules) @@ -201,23 +201,23 @@ subsection {* Some random examples *} -schematic_lemma (in LP2) "A:* c:A f:A->A |- - Lam a:A. Pi P:A->*.P^c -> (Pi x:A. P^x->P^(f^x)) -> P^a : ?T" +schematic_lemma (in LP2) "A:* c:A f:A\A \ + \ a:A. \ P:A\*.P^c \ (\ x:A. P^x\P^(f^x)) \ P^a : ?T" by (depth_solve rules) -schematic_lemma (in CC) "Lam A:*.Lam c:A. Lam f:A->A. - Lam a:A. Pi P:A->*.P^c -> (Pi x:A. P^x->P^(f^x)) -> P^a : ?T" +schematic_lemma (in CC) "\ A:*.\ c:A. \ f:A\A. + \ a:A. \ P:A\*.P^c \ (\ x:A. P^x\P^(f^x)) \ P^a : ?T" by (depth_solve rules) schematic_lemma (in LP2) - "A:* a:A b:A |- ?p: (Pi P:A->*.P^a->P^b) -> (Pi P:A->*.P^b->P^a)" + "A:* a:A b:A \ ?p: (\ P:A\*.P^a\P^b) \ (\ P:A\*.P^b\P^a)" -- {* Symmetry of Leibnitz equality *} apply (strip_asms rules) apply (rule lam_ss) apply (depth_solve1 rules) prefer 2 apply (depth_solve1 rules) - apply (erule_tac a = "Lam x:A. Pi Q:A->*.Q^x->Q^a" in pi_elim) + apply (erule_tac a = "\ x:A. \ Q:A\*.Q^x\Q^a" in pi_elim) apply (depth_solve1 rules) apply (unfold beta) apply (erule imp_elim)