diff -r e4d42f5766dc -r 41393ecb57ac src/HOL/Library/Bit_Operations.thy --- a/src/HOL/Library/Bit_Operations.thy Tue Aug 04 09:24:00 2020 +0000 +++ b/src/HOL/Library/Bit_Operations.thy Tue Aug 04 09:33:05 2020 +0000 @@ -15,9 +15,11 @@ fixes "and" :: \'a \ 'a \ 'a\ (infixr \AND\ 64) and or :: \'a \ 'a \ 'a\ (infixr \OR\ 59) and xor :: \'a \ 'a \ 'a\ (infixr \XOR\ 59) + and mask :: \nat \ 'a\ assumes bit_and_iff: \\n. bit (a AND b) n \ bit a n \ bit b n\ and bit_or_iff: \\n. bit (a OR b) n \ bit a n \ bit b n\ and bit_xor_iff: \\n. bit (a XOR b) n \ bit a n \ bit b n\ + and mask_eq_exp_minus_1: \mask n = 2 ^ n - 1\ begin text \ @@ -93,9 +95,6 @@ \take_bit n (a XOR b) = take_bit n a XOR take_bit n b\ by (auto simp add: bit_eq_iff bit_take_bit_iff bit_xor_iff) -definition mask :: \nat \ 'a\ - where mask_eq_exp_minus_1: \mask n = 2 ^ n - 1\ - lemma bit_mask_iff: \bit (mask m) n \ 2 ^ n \ 0 \ n < m\ by (simp add: mask_eq_exp_minus_1 bit_mask_iff) @@ -104,25 +103,33 @@ \even (mask n) \ n = 0\ using bit_mask_iff [of n 0] by auto -lemma mask_0 [simp, code]: +lemma mask_0 [simp]: \mask 0 = 0\ by (simp add: mask_eq_exp_minus_1) -lemma mask_Suc_exp [code]: +lemma mask_Suc_0 [simp]: + \mask (Suc 0) = 1\ + by (simp add: mask_eq_exp_minus_1 add_implies_diff sym) + +lemma mask_Suc_exp: \mask (Suc n) = 2 ^ n OR mask n\ by (rule bit_eqI) (auto simp add: bit_or_iff bit_mask_iff bit_exp_iff not_less le_less_Suc_eq) lemma mask_Suc_double: - \mask (Suc n) = 2 * mask n OR 1\ + \mask (Suc n) = 1 OR 2 * mask n\ proof (rule bit_eqI) fix q assume \2 ^ q \ 0\ - show \bit (mask (Suc n)) q \ bit (2 * mask n OR 1) q\ + show \bit (mask (Suc n)) q \ bit (1 OR 2 * mask n) q\ by (cases q) (simp_all add: even_mask_iff even_or_iff bit_or_iff bit_mask_iff bit_exp_iff bit_double_iff not_less le_less_Suc_eq bit_1_iff, auto simp add: mult_2) qed +lemma mask_numeral: + \mask (numeral n) = 1 + 2 * mask (pred_numeral n)\ + by (simp add: numeral_eq_Suc mask_Suc_double one_or_eq ac_simps) + lemma take_bit_eq_mask: \take_bit n a = a AND mask n\ by (rule bit_eqI) @@ -495,6 +502,9 @@ \bit (k XOR l) n \ bit k n \ bit l n\ for k l :: int by (auto simp add: xor_int_def bit_or_int_iff bit_and_int_iff bit_not_int_iff) +definition mask_int :: \nat \ int\ + where \mask n = (2 :: int) ^ n - 1\ + instance proof fix k l :: int and n :: nat show \- k = NOT (k - 1)\ @@ -505,7 +515,7 @@ by (fact bit_or_int_iff) show \bit (k XOR l) n \ bit k n \ bit l n\ by (fact bit_xor_int_iff) -qed (simp_all add: bit_not_int_iff) +qed (simp_all add: bit_not_int_iff mask_int_def) end @@ -976,6 +986,9 @@ definition xor_nat :: \nat \ nat \ nat\ where \m XOR n = nat (int m XOR int n)\ for m n :: nat +definition mask_nat :: \nat \ nat\ + where \mask n = (2 :: nat) ^ n - 1\ + instance proof fix m n q :: nat show \bit (m AND n) q \ bit m q \ bit n q\ @@ -984,7 +997,7 @@ by (auto simp add: or_nat_def bit_or_iff less_le bit_eq_iff) show \bit (m XOR n) q \ bit m q \ bit n q\ by (auto simp add: xor_nat_def bit_xor_iff less_le bit_eq_iff) -qed +qed (simp add: mask_nat_def) end @@ -1044,19 +1057,12 @@ lift_definition xor_integer :: \integer \ integer \ integer\ is xor . -instance proof - fix k l :: \integer\ and n :: nat - show \- k = NOT (k - 1)\ - by transfer (simp add: minus_eq_not_minus_1) - show \bit (NOT k) n \ (2 :: integer) ^ n \ 0 \ \ bit k n\ - by transfer (fact bit_not_iff) - show \bit (k AND l) n \ bit k n \ bit l n\ - by transfer (fact bit_and_iff) - show \bit (k OR l) n \ bit k n \ bit l n\ - by transfer (fact bit_or_iff) - show \bit (k XOR l) n \ bit k n \ bit l n\ - by transfer (fact bit_xor_iff) -qed +lift_definition mask_integer :: \nat \ integer\ + is mask . + +instance by (standard; transfer) + (simp_all add: minus_eq_not_minus_1 mask_eq_exp_minus_1 + bit_not_iff bit_and_iff bit_or_iff bit_xor_iff) end @@ -1072,15 +1078,11 @@ lift_definition xor_natural :: \natural \ natural \ natural\ is xor . -instance proof - fix m n :: \natural\ and q :: nat - show \bit (m AND n) q \ bit m q \ bit n q\ - by transfer (fact bit_and_iff) - show \bit (m OR n) q \ bit m q \ bit n q\ - by transfer (fact bit_or_iff) - show \bit (m XOR n) q \ bit m q \ bit n q\ - by transfer (fact bit_xor_iff) -qed +lift_definition mask_natural :: \nat \ natural\ + is mask . + +instance by (standard; transfer) + (simp_all add: mask_eq_exp_minus_1 bit_and_iff bit_or_iff bit_xor_iff) end